Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The purpose of this package is to manipulate SVG files that are templates of charts the user wants to produce. In vector graphics one copes with x-/y-coordinates of elements (e.g. lines, rectangles, text). Their scale is often dependent on the program that is used to produce the graphics. In applied statistics one usually has numeric values on a fixed scale (e.g. percentage values between 0 and 100) to show in a chart. Basically, svgtools transforms the statistical values into coordinates and widths/heights of the vector graphics. This is done by stackedBar() for bar charts, by linesSymbols() for charts with lines and/or symbols (dot markers) and scatterSymbols() for scatterplots.
This package performs inference of several model-free group contrast measures, which include difference/ratio of cumulative incidence rates at given time points, quantiles, and restricted mean survival times (RMST). Two kinds of covariate adjustment procedures (i.e., regression and augmentation) for inference of the metrics based on RMST are also included.
This package performs the permutation test using difference in the restricted mean survival time (RMST) between groups as a summary measure of the survival time distribution. When the sample size is less than 50 per group, it has been shown that there is non-negligible inflation of the type I error rate in the commonly used asymptotic test for the RMST comparison. Generally, permutation tests can be useful in such a situation. However, when we apply the permutation test for the RMST comparison, particularly in small sample situations, there are some cases where the survival function in either group cannot be defined due to censoring in the permutation process. Horiguchi and Uno (2020) <doi:10.1002/sim.8565> have examined six workable solutions to handle this numerical issue. It performs permutation tests with implementation of the six methods outlined in the paper when the numerical issue arises during the permutation process. The result of the asymptotic test is also provided for a reference.
This package provides interface to the Spectator Earth API <https://api.spectator.earth/>, mainly for obtaining the acquisition plans and satellite overpasses for Sentinel-1, Sentinel-2, Landsat-8 and Landsat-9 satellites. Current position and trajectory can also be obtained for a much larger set of satellites. It is also possible to search the archive for available images over the area of interest for a given (past) period, get the URL links to download the whole image tiles, or alternatively to download the image for just the area of interest based on selected spectral bands.
Reports markers list, differentially expressed genes, associated pathways, cell-type annotations, does batch correction and other related single cell analyses all wrapped within Seurat'.
Integration of two data sources referred to the same target population which share a number of variables. Some functions can also be used to impute missing values in data sets through hot deck imputation methods. Methods to perform statistical matching when dealing with data from complex sample surveys are available too.
Allows users to calculate pairwise Nei's Genetic Distances (Nei 1972), pairwise Fixation Indexes (Fst) (Weir & Cockerham 1984) and also Genomic Relationship matrixes following Yang et al. (2010) in mixed and single ploidy populations. Bootstrapping across loci is implemented during Fst calculation to generate confidence intervals and p-values around pairwise Fst values. StAMPP utilises SNP genotype data of any ploidy level (with the ability to handle missing data) and is coded to utilise multithreading where available to allow efficient analysis of large datasets. StAMPP is able to handle genotype data from genlight objects allowing integration with other packages such adegenet. Please refer to LW Pembleton, NOI Cogan & JW Forster, 2013, Molecular Ecology Resources, 13(5), 946-952. <doi:10.1111/1755-0998.12129> for the appropriate citation and user manual. Thank you in advance.
Database of genes which frequently sustain somatic mutations, but are unlikely to drive cancer.
This package provides a set of functions for obtaining positional parameters and magnitude difference between components of binary and multiple stellar systems from series of speckle images.
This package provides tools for smoothing and tidying spatial features (i.e. lines and polygons) to make them more aesthetically pleasing. Smooth curves, fill holes, and remove small fragments from lines and polygons.
This package provides tools to decompose (transformed) spatial connectivity matrices and perform supervised or unsupervised semiparametric spatial filtering in a regression framework. The package supports unsupervised spatial filtering in standard linear as well as some generalized linear regression models.
Non-proportional hazard (NPH) is commonly observed in immuno-oncology studies, where the survival curves of the treatment and control groups show delayed separation. To properly account for NPH, several statistical methods have been developed. One such method is Max-Combo test, which is a straightforward and flexible hypothesis testing method that can simultaneously test for constant, early, middle, and late treatment effects. However, the majority of the Max-Combo test performed in clinical studies are unstratified, ignoring the important prognostic stratification factors. To fill this gap, we have developed an R package for stratified Max-Combo testing that accounts for stratified baseline factors. Our package explores various methods for calculating combined test statistics, estimating joint distributions, and determining the p-values.
Monte Carlo sampling algorithms for semiparametric Bayesian regression analysis. These models feature a nonparametric (unknown) transformation of the data paired with widely-used regression models including linear regression, spline regression, quantile regression, and Gaussian processes. The transformation enables broader applicability of these key models, including for real-valued, positive, and compactly-supported data with challenging distributional features. The samplers prioritize computational scalability and, for most cases, Monte Carlo (not MCMC) sampling for greater efficiency. Details of the methods and algorithms are provided in Kowal and Wu (2024) <doi:10.1080/01621459.2024.2395586>.
This package performs a dual-parameter sensitivity analysis of treatment effect to unmeasured confounding in observational studies with either survival or competing risks outcomes. Huang, R., Xu, R. and Dulai, P.S.(2020) <doi:10.1002/sim.8672>.
The function syncSubsample subsamples temporal data of different entities so that the result only contains synchronal events. The function mci calculates the Movement Coordination Index (MCI, see reference on help page for function mci') of a data set created with the function syncSubsample'.
Function for the GUI API to interact with external IDE/code editors.
This is the implementation of the novel structural Bayesian information criterion by Zhou, 2020 (under review). In this method, the prior structure is modeled and incorporated into the Bayesian information criterion framework. Additionally, we also provide the implementation of a two-step algorithm to generate the candidate model pool.
This package provides a single, phenome-wide permutation of large-scale biobank data. When a large number of phenotypes are analyzed in parallel, a single permutation across all phenotypes followed by genetic association analyses of the permuted data enables estimation of false discovery rates (FDRs) across the phenome. These FDR estimates provide a significance criterion for interpreting genetic associations in a biobank context. For the basic permutation of unrelated samples, this package takes a sample-by-variable file with ID, genotypic covariates, phenotypic covariates, and phenotypes as input. For data with related samples, it also takes a file with sample pair-wise identity-by-descent information. The function outputs a permuted sample-by-variable file ready for genome-wide association analysis. See Annis et al. (2021) <doi:10.21203/rs.3.rs-873449/v1> for details.
This is a collection of functions to calculate stop-signal reaction time (SSRT). Includes functions for both "integration" and "mean" methods; both fixed and adaptive stop-signal delays are supported (see appropriate functions). Calculation is based on Verbruggen et al. (2019) <doi:10.7554/eLife.46323.001> and Verbruggen et al. (2013) <doi:10.1177/0956797612457390>.
Analysis Results Standard (ARS), a foundational standard by CDISC (Clinical Data Interchange Standards Consortium), provides a logical data model for metadata describing all components to calculate Analysis Results. <https://www.cdisc.org/standards/foundational/analysis-results-standard> Using siera package, ARS metadata is ingested (JSON or Excel format), producing programmes to generate Analysis Results Datasets (ARDs).
Publication bias, the fact that studies identified for inclusion in a meta analysis do not represent all studies on the topic of interest, is commonly recognized as a threat to the validity of the results of a meta analysis. One way to explicitly model publication bias is via selection models or weighted probability distributions. In this package we provide implementations of several parametric and nonparametric weight functions. The novelty in Rufibach (2011) is the proposal of a non-increasing variant of the nonparametric weight function of Dear & Begg (1992). The new approach potentially offers more insight in the selection process than other methods, but is more flexible than parametric approaches. To maximize the log-likelihood function proposed by Dear & Begg (1992) under a monotonicity constraint we use a differential evolution algorithm proposed by Ardia et al (2010a, b) and implemented in Mullen et al (2009). In addition, we offer a method to compute a confidence interval for the overall effect size theta, adjusted for selection bias as well as a function that computes the simulation-based p-value to assess the null hypothesis of no selection as described in Rufibach (2011, Section 6).
This package provides a toolbox for defining React component wrappers which can be used seamlessly in Shiny apps.
This package provides the necessary sample size for a longitudinal study with binary outcome in order to attain a pre-specified power while strictly maintaining the Type I error rate. Kapur K, Bhaumik R, Tang XC, Hur K, Reda DJ, Bhaumik D (2014) <doi:10.1002/sim.6203>.
This package provides functions to enumerate and reference figures, tables and equations in R Markdown documents that do not support these features (thus not bookdown or quarto'. Supporting functions for using Sweave and Knitr with LyX'.