Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Shadow Document Object Model is a web standard that offers component style and markup encapsulation. It is a critically important piece of the Web Components story as it ensures that a component will work in any environment even if other CSS or JavaScript is at play on the page. Custom HTML tags can't be directly identified with selenium tools, because Selenium doesn't provide any way to deal with shadow elements. Using this plugin you can handle any custom HTML tags.
This package provides methods for the analysis of signed networks. This includes several measures for structural balance as introduced by Cartwright and Harary (1956) <doi:10.1037/h0046049>, blockmodeling algorithms from Doreian (2008) <doi:10.1016/j.socnet.2008.03.005>, various centrality indices, and projections of signed two-mode networks introduced by Schoch (2020) <doi:10.1080/0022250X.2019.1711376>.
Automatically replaces "misspelled" words in a character vector based on their string distance from a list of words sorted by their frequency in a corpus. The default word list provided in the package comes from the Corpus of Contemporary American English. Uses the Jaro-Winkler distance metric for string similarity as implemented in van der Loo (2014) <doi:10.32614/RJ-2014-011>. The word frequency data is derived from Davies (2008-) "The Corpus of Contemporary American English (COCA)" <https://www.english-corpora.org/coca/>.
We visualize the standard deviation of a data set as the size of a prism whose volume equals the total volume of several prisms made from the Empirical Cumulative Distribution Function.
Implementation of all possible forms of 2x2 and 3x3 space-filling curves, i.e., the generalized forms of the Hilbert curve <https://en.wikipedia.org/wiki/Hilbert_curve>, the Peano curve <https://en.wikipedia.org/wiki/Peano_curve> and the Peano curve in the meander type (Figure 5 in <https://eudml.org/doc/141086>). It can generates nxn curves expanded from any specific level-1 units. It also implements the H-curve and the three-dimensional Hilbert curve.
This package provides functions to implement group sequential procedures that allow for early stopping to declare efficacy using a surrogate marker and the possibility of futility stopping. More details are available in: Parast, L. and Bartroff, J (2024) <doi:10.1093/biomtc/ujae108>. A tutorial for this package can be found at <https://www.laylaparast.com/surrogateseq>. A Shiny App implementing the methods can be found at <https://parastlab.shinyapps.io/SurrogateSeqApp/>.
This package contains an R Markdown template for a clinical trial protocol adhering to the SPIRIT statement. The SPIRIT (Standard Protocol Items for Interventional Trials) statement outlines recommendations for a minimum set of elements to be addressed in a clinical trial protocol. Also contains functions to create a xml document from the template and upload it to clinicaltrials.gov<https://www.clinicaltrials.gov/> for trial registration.
Chat with large language models on your machine without internet with complete privacy via ollama', powered by R shiny interface. For more information on ollama', visit <https://ollama.com>.
This package provides methods to calculate sample size for single-arm survival studies using the arcsine transformation, incorporating uniform accrual and exponential survival assumptions. Includes functionality for detailed numerical integration and simulation. This method is based on Nagashima et al. (2021) <doi:10.1002/pst.2090>.
Implementation of prediction and inference procedures for Synthetic Control methods using least square, lasso, ridge, or simplex-type constraints. Uncertainty is quantified with prediction intervals as developed in Cattaneo, Feng, and Titiunik (2021) <doi:10.1080/01621459.2021.1979561> for a single treated unit and in Cattaneo, Feng, Palomba, and Titiunik (2025) <doi:10.1162/rest_a_01588> for multiple treated units and staggered adoption. More details about the software implementation can be found in Cattaneo, Feng, Palomba, and Titiunik (2025) <doi:10.18637/jss.v113.i01>.
Selection of spatially balanced samples. In particular, the implemented sampling designs allow to select probability samples well spread over the population of interest, in any dimension and using any distance function (e.g. Euclidean distance, Manhattan distance). For more details, Pantalone F, Benedetti R, and Piersimoni F (2022) <doi:10.18637/jss.v103.c02>, Benedetti R and Piersimoni F (2017) <doi:10.1002/bimj.201600194>, and Benedetti R and Piersimoni F (2017) <arXiv:1710.09116>. The implementation has been done in C++ through the use of Rcpp and RcppArmadillo'.
Sparse Linear Method(SLIM) predicts ratings and top-n recommendations suited for sparse implicit positive feedback systems. SLIM is decomposed into multiple elasticnet optimization problems which are solved in parallel over multiple cores. The package is based on "SLIM: Sparse Linear Methods for Top-N Recommender Systems" by Xia Ning and George Karypis <doi:10.1109/ICDM.2011.134>.
Semiparametric and parametric estimation of INAR models including a finite sample refinement (Faymonville et al. (2022) <doi:10.1007/s10260-022-00655-0>) for the semiparametric setting introduced in Drost et al. (2009) <doi:10.1111/j.1467-9868.2008.00687.x>, different procedures to bootstrap INAR data (Jentsch, C. and Weià , C.H. (2017) <doi:10.3150/18-BEJ1057>) and flexible simulation of INAR data.
This package provides a collection of functions that enable easy access and updating of a database of data over time. More specifically, the package facilitates type-2 history for data-warehouses and provides a number of Quality of life improvements for working on SQL databases with R. For reference see Ralph Kimball and Margy Ross (2013, ISBN 9781118530801).
Interface for creation of slp class smoother objects for use in Generalized Additive Models (as implemented by packages gam and mgcv').
This package provides a widget for shiny apps to handle schedule expression input, using the cron-expression-input JavaScript component. Note that this does not edit the crontab file, it is just an input element for the schedules. See <https://github.com/DatalabFabriek/shinycroneditor/blob/main/inst/examples/shiny-app.R> for an example implementation.
This package provides a series of tools for analyzing Systems Factorial Technology data. This includes functions for plotting and statistically testing capacity coefficient functions and survivor interaction contrast functions. Houpt, Blaha, McIntire, Havig, and Townsend (2013) <doi:10.3758/s13428-013-0377-3> provide a basic introduction to Systems Factorial Technology along with examples using the sft R package.
This package provides methods for sensory discrimination methods; duotrio, tetrad, triangle, 2-AFC, 3-AFC, A-not A, same-different, 2-AC and degree-of-difference. This enables the calculation of d-primes, standard errors of d-primes, sample size and power computations, and comparisons of different d-primes. Methods for profile likelihood confidence intervals and plotting are included. Most methods are described in Brockhoff, P.B. and Christensen, R.H.B. (2010) <doi:10.1016/j.foodqual.2009.04.003>.
Label, recode, rename, and convert datasets and ASCII files more efficiently. speedycode automates the code necessary for labeling variables with the labelled package, recoding and renaming variables with dplyr syntax, and converting ASCII files with the readroper package. Most functions require only the name of the dataset and the code will be automatically written. Some convenience functions useful for converting ASCII files are also included.
This package provides a convenient interface to the staticrypt by Robin Moisson <https://github.com/robinmoisson/staticrypt>---'Node.js package for adding a password protection layer to static HTML pages. This package can be integrated into the post-render process of quarto documents to secure them with a password.
Get programmatic access to data from the Czech public budgeting and accounting database, Státnà pokladna <https://monitor.statnipokladna.gov.cz/>.
Proposes a torch implementation of Graph Net architecture allowing different options for message passing and feature embedding.
Perform survival simulation with parametric survival model generated from survreg function in survival package. In each simulation coefficients are resampled from variance-covariance matrix of parameter estimates to capture uncertainty in model parameters. Prediction intervals of Kaplan-Meier estimates and hazard ratio of treatment effect can be further calculated using simulated survival data.
This package provides a design-based approach to statistical inference, with a focus on spatial data. Spatially balanced samples are selected using the Generalized Random Tessellation Stratified (GRTS) algorithm. The GRTS algorithm can be applied to finite resources (point geometries) and infinite resources (linear / linestring and areal / polygon geometries) and flexibly accommodates a diverse set of sampling design features, including stratification, unequal inclusion probabilities, proportional (to size) inclusion probabilities, legacy (historical) sites, a minimum distance between sites, and two options for replacement sites (reverse hierarchical order and nearest neighbor). Data are analyzed using a wide range of analysis functions that perform categorical variable analysis, continuous variable analysis, attributable risk analysis, risk difference analysis, relative risk analysis, change analysis, and trend analysis. spsurvey can also be used to summarize objects, visualize objects, select samples that are not spatially balanced, select panel samples, measure the amount of spatial balance in a sample, adjust design weights, and more. For additional details, see Dumelle et al. (2023) <doi:10.18637/jss.v105.i03>.