Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides an application that acts as a GUI for the stm text analysis package.
Model Selection Based on Combined Penalties. This package implements a stepwise forward variable selection algorithm based on a penalized likelihood criterion that combines the L0 with L2 or L1 norms.
This package implements Multivariate ANalysis Of VAriance (MANOVA) parameters inference and test with regularization for semicontinuous high-dimensional data. The method can be applied also in presence of low-dimensional data. The p-value can be obtained through asymptotic distribution or using a permutation procedure. The package gives also the possibility to simulate this type of data. Method is described in Elena Sabbioni, Claudio Agostinelli and Alessio Farcomeni (2025) A regularized MANOVA test for semicontinuous high-dimensional data. Biometrical Journal, 67:e70054. DOI <doi:10.1002/bimj.70054>, arXiv DOI <doi:10.48550/arXiv.2401.04036>.
Print function signatures and find overly complicated code.
This package provides a programmatic interface to many species occurrence data sources, including Global Biodiversity Information Facility ('GBIF'), iNaturalist', eBird', Integrated Digitized Biocollections ('iDigBio'), VertNet', Ocean Biogeographic Information System ('OBIS'), and Atlas of Living Australia ('ALA'). Includes functionality for retrieving species occurrence data, and combining those data.
This package provides a tool for simulating rhythmic data: transcriptome data using Gaussian or negative binomial distributions, and behavioral activity data using Bernoulli or Poisson distributions. See Singer et al. (2019) <doi:10.7717/peerj.6985>.
This package provides a collection of tools for analyzing significance of assets, funds, and trading strategies, based on the Sharpe ratio and overfit of the same. Provides density, distribution, quantile and random generation of the Sharpe ratio distribution based on normal returns, as well as the optimal Sharpe ratio over multiple assets. Computes confidence intervals on the Sharpe and provides a test of equality of Sharpe ratios based on the Delta method. The statistical foundations of the Sharpe can be found in the author's Short Sharpe Course <doi:10.2139/ssrn.3036276>.
This package implements the Stratigraphic Plug Alignment (SPA) procedure for integrating sparsely sampled plug-based measurements (e.g., total organic carbon, porosity, mineralogy) with high-resolution X-ray fluorescence (XRF) geochemical data. SPA uses linear interpolation via the base approx() function with constrained extrapolation (rule = 1) to preserve stratigraphic order and avoid estimation beyond observed depths. The method aligns all datasets to a common depth grid, enabling high-resolution multivariate analysis and stratigraphic interpretation of core-based datasets such as those from the Utica and Point Pleasant formations. See R Core Team (2025) <https://stat.ethz.ch/R-manual/R-devel/library/stats/html/stats-package.html> and Omodolor (2025) <http://rave.ohiolink.edu/etdc/view?acc_num=case175262671767524> for methodological background and geological context.
Builds regression trees and random forests for longitudinal or functional data using a spline projection method. Implements and extends the work of Yu and Lambert (1999) <doi:10.1080/10618600.1999.10474847>. This method allows trees and forests to be built while considering either level and shape or only shape of response trajectories.
Import, process, summarize and visualize raw data from metabolic carts. See Robergs, Dwyer, and Astorino (2010) <doi:10.2165/11319670-000000000-00000> for more details on data processing.
This package provides the core framework for a discrete event system to implement a complete data-to-decisions, reproducible workflow. The core components facilitate the development of modular pieces, and enable the user to include additional functionality by running user-built modules. Includes conditional scheduling, restart after interruption, packaging of reusable modules, tools for developing arbitrary automated workflows, automated interweaving of modules of different temporal resolution, and tools for visualizing and understanding the within-project dependencies. The suggested package NLMR can be installed from the repository (<https://PredictiveEcology.r-universe.dev>).
Computes synchrony as windowed cross-correlation based on two-dimensional time series in a text file you can upload. SUSY works as described in Tschacher & Meier (2020) <doi:10.1080/10503307.2019.1612114>.
This package provides estimation of simultaneous bootstrap and asymptotic confidence intervals for diversity indices, namely the Shannon and the Simpson index. Several pre--specified multiple comparison types are available to choose. Further user--defined contrast matrices are applicable. In addition, simboot estimates adjusted as well as unadjusted p--values for two of the three proposed bootstrap methods. Further simboot allows for comparing biological diversities of two or more groups while simultaneously testing a user-defined selection of Hill numbers of orders q, which are considered as appropriate and useful indices for measuring diversity.
In Shiny apps, it is sometimes useful to see a plot or a table in full screen. Using Shinyfullscreen', you can easily designate the HTML elements that can be displayed on fullscreen and use buttons to trigger the fullscreen view.
These are miscellaneous functions that I find useful for my research and teaching. The contents include themes for plots, functions for simulating quantities of interest from regression models, functions for simulating various forms of fake data for instructional/research purposes, and many more. All told, the functions provided here are broadly useful for data organization, data presentation, data recoding, and data simulation.
Three new methods to perform outlier detection in a survival context. In total there are six methods provided, the first three methods are traditional residual-based outlier detection methods, the second three are the concordance-based. Package developed during the work on the two following publications: Pinto J., Carvalho A. and Vinga S. (2015) <doi:10.5220/0005225300750082>; Pinto J.D., Carvalho A.M., Vinga S. (2015) <doi:10.1007/978-3-319-27926-8_22>.
We analyzed the nucleotide composition of genes with a special emphasis on stability of DNA sequences. Besides, in a variety of different organisms unequal use of synonymous codons, or codon usage bias, occurs which also show variation among genes in the same genome. Seemingly, codon usage bias is affected by both selective constraints and mutation bias which allows and enables us to examine and detect changes in these two evolutionary forces between genomes or along one genome. Therefore, we determined the codon adaptation index (CAI), effective number of codons (ENC) and codon usage analysis with calculation of the relative synonymous codon usage (RSCU), and subsequently predicted the translation efficiency and accuracy through GC-rich codon usages. Furthermore, we estimated the relative stability of the DNA sequence following calculation of the average free energy (Delta G) and Dimer base-stacking energy level.
This package provides a modification of the preventive vaccine efficacy trial design of Gilbert, Grove et al. (2011, Statistical Communications in Infectious Diseases) is implemented, with application generally to individual-randomized clinical trials with multiple active treatment groups and a shared control group, and a study endpoint that is a time-to-event endpoint subject to right-censoring. The design accounts for the issues that the efficacy of the treatment/vaccine groups may take time to accrue while the multiple treatment administrations/vaccinations are given; there is interest in assessing the durability of treatment efficacy over time; and group sequential monitoring of each treatment group for potential harm, non-efficacy/efficacy futility, and high efficacy is warranted. The design divides the trial into two stages of time periods, where each treatment is first evaluated for efficacy in the first stage of follow-up, and, if and only if it shows significant treatment efficacy in stage one, it is evaluated for longer-term durability of efficacy in stage two. The package produces plots and tables describing operating characteristics of a specified design including an unconditional power for intention-to-treat and per-protocol/as-treated analyses; trial duration; probabilities of the different possible trial monitoring outcomes (e.g., stopping early for non-efficacy); unconditional power for comparing treatment efficacies; and distributions of numbers of endpoint events occurring after the treatments/vaccinations are given, useful as input parameters for the design of studies of the association of biomarkers with a clinical outcome (surrogate endpoint problem). The code can be used for a single active treatment versus control design and for a single-stage design.
Construct sketches of data via random subspace embeddings. For more details, see the following papers. Lee, S. and Ng, S. (2022). "Least Squares Estimation Using Sketched Data with Heteroskedastic Errors," Proceedings of the 39th International Conference on Machine Learning (ICML22), 162:12498-12520. Lee, S. and Ng, S. (2020). "An Econometric Perspective on Algorithmic Subsampling," Annual Review of Economics, 12(1): 45รข 80.
Computes the probability of a set of species abundances of a single or multiple samples of individuals with one or more guilds under a mainland-island model. One must specify the mainland (metacommunity) model and the island (local) community model. It assumes that species fluctuate independently. The package also contains functions to simulate under this model. See Haegeman, B. & R.S. Etienne (2017). A general sampling formula for community structure data. Methods in Ecology & Evolution 8: 1506-1519 <doi:10.1111/2041-210X.12807>.
Implementation of the wavelet-based spatial verification method of Buschow and Friederichs "SAD: Verifying the Scale, Anisotropy and Direction of precipitation forecasts" (2020, submitted to QJRMS). Forecasts and Observations are transformed by a decimated or redundant dual-tree complex wavelet transform to analyze the spatial scale, degree of anisotropy and preferred direction in each field. These structural attributes are compared by a series of scores. An experimental algorithm for the correction of these errors is included as well.
Generates cell-level cytokine activity estimates using relevant information from gene sets constructed with the CytoSig and the Reactome databases and scored using the modified Variance-adjusted Mahalanobis (VAM) framework for single-cell RNA-sequencing (scRNA-seq) data. CytoSig database is described in: Jiang at al., (2021) <doi:10.1038/s41592-021-01274-5>. Reactome database is described in: Gillespie et al., (2021) <doi:10.1093/nar/gkab1028>. The VAM method is outlined in: Frost (2020) <doi:10.1093/nar/gkaa582>.
An exploratory and heuristic approach for specification search in Structural Equation Modeling. The basic idea is to subsample the original data and then search for optimal models on each subset. Optimality is defined through two objectives: model fit and parsimony. As these objectives are conflicting, we apply a multi-objective optimization methods, specifically NSGA-II, to obtain optimal models for the whole range of model complexities. From these optimal models, we consider only the relevant model specifications (structures), i.e., those that are both stable (occur frequently) and parsimonious and use those to infer a causal model.
Displays the content of a R script into the Cytoscape network-visualization app <https://cytoscape.org/>.