Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Useful functions to connect to TM1 <https://www.ibm.com/uk-en/products/planning-and-analytics> instance from R via REST API. With the functions in the package, data can be imported from TM1 via mdx view or native view, data can be sent to TM1', processes and chores can be executed, and cube and dimension metadata information can be taken.
This package provides functions for imputing missing item responses for dichotomous and polytomous test and assessment data. This package enables missing imputation methods that are suitable for test and assessment data, including: listwise (LW) deletion (see De Ayala et al. 2001 <doi:10.1111/j.1745-3984.2001.tb01124.x>), treating as incorrect (IN, see Lord, 1974 <doi: 10.1111/j.1745-3984.1974.tb00996.x>; Mislevy & Wu, 1996 <doi: 10.1002/j.2333-8504.1996.tb01708.x>; Pohl et al., 2014 <doi: 10.1177/0013164413504926>), person mean imputation (PM), item mean imputation (IM), two-way (TW) and response function (RF) imputation, (see Sijtsma & van der Ark, 2003 <doi: 10.1207/s15327906mbr3804_4>), logistic regression (LR) imputation, predictive mean matching (PMM), and expectationâ maximization (EM) imputation (see Finch, 2008 <doi: 10.1111/j.1745-3984.2008.00062.x>).
Pacote para a analise de experimentos com um ou dois fatores com testemunhas adicionais conduzidos no delineamento inteiramente casualizado ou em blocos casualizados. "Package for the analysis of one or two-way experiments with additional controls conducted in a completely randomized design or in a randomized block design".
Estimates the time-varying (tv) parameters of the GARCH(1,1) model, enabling the modeling of non-stationary volatilities by allowing the model parameters to change gradually over time. The estimation and prediction processes are facilitated through the application of the Kalman filter and state-space equations. This package supports the estimation of tv parameters for various deterministic functions, which can be identified through exploratory analysis of different time periods or segments of return data. The methodology is grounded in the framework presented by Ferreira et al. (2017) <doi:10.1080/00949655.2017.1334778>.
Palettes generated from Tintin covers. There is one palette per cover, with a total of 24 palettes of 5 colours each. Includes functions to interpolate colors in order to create more colors based on the provided palettes.The data is based on Cyr, et al. (2004) <doi:10.1503/cmaj.1041405> and Wikipedia <https://en.wikipedia.org/wiki/The_Adventures_of_Tintin>.
This package contains logic for single sample gene set testing of cancer transcriptomic data with adjustment for normal tissue-specificity. Frost, H. Robert (2023) "Tissue-adjusted pathway analysis of cancer (TPAC)" <doi:10.1101/2022.03.17.484779>.
This package provides tools for timescale decomposition of the classic variance ratio of community ecology. Tools are as described in Zhao et al (in prep), extending commonly used methods introduced by Peterson et al (1975) <doi: 10.2307/1936306>.
This package provides functions and Examples in Sample Size Calculation in Clinical Research.
This package provides a game inspired by Tetris'. Opens a plot window device and starts a game of tetRys in it. Steer the tetrominos with the arrow keys, press Pause to pause and Esc to end the game.
Sensitivity analysis using the trimmed means estimator.
Visualizes the relationship between allele frequency and effect size in genetic association studies. The input is a data frame containing association results. The output is a plot with the effect size of risk variants in the Y axis, and the allele frequency spectrum in the X axis. Corte et al (2023) <doi:10.1101/2023.04.21.23288923>.
Schedule R scripts/processes with the Windows task scheduler. This allows R users to automate R processes on specific time points from R itself.
Easy visualization, wrangling, and feature engineering of time series data for forecasting and machine learning prediction. Consolidates and extends time series functionality from packages including dplyr', stats', xts', forecast', slider', padr', recipes', and rsample'.
The classical two-sample t-test works well for the normally distributed data or data with large sample size. The tcfu() and tt() tests implemented in this package provide better type-I-error control with more accurate power when testing the equality of two-sample means for skewed populations having unequal variances. These tests are especially useful when the sample sizes are moderate. The tcfu() uses the Cornish-Fisher expansion to achieve a better approximation to the true percentiles. The tt() provides transformations of the Welch's t-statistic so that the sampling distribution become more symmetric. For more technical details, please refer to Zhang (2019) <http://hdl.handle.net/2097/40235>.
Which uses Twitter APIs for the necessary data in sentiment analysis, acts as a middleware with the approved Twitter Application. A special access key is given to users who subscribe to the application with their Twitter account. With this special access key, the user defined keyword for sentiment analysis can be searched in twitter recent searches and results can be obtained( more information <https://github.com/hakkisabah/tsentiment> ). In addition, a service named tsentiment-services has been developed to provide all these operations ( for more information <https://github.com/hakkisabah/tsentiment-services> ). After the successful results obtained and in line with the permissions given by the user, the results of the analysis of the word cloud and bar graph saved in the user folder directory can be seen. In each analysis performed, the previous analysis visual result is deleted and this is the basic information you need to know as a practice rule. tsentiment package provides a free service that acts as a middleware for easy data extraction from Twitter, and in return, the user rate limit is reduced by 30 requests from the total limit and the remaining requests are used. These 30 requests are reserved for use in application analytics. For information about endpoints, you can refer to the limit information in the "GET search/tweets" row in the Endpoints column in the list at <https://developer.twitter.com/en/docs/twitter-api/v1/rate-limits>.
This package provides functions for the selection of thresholds for use in extreme value models, based mainly on the methodology in Northrop, Attalides and Jonathan (2017) <doi:10.1111/rssc.12159>. It also performs predictive inferences about future extreme values, based either on a single threshold or on a weighted average of inferences from multiple thresholds, using the revdbayes package <https://cran.r-project.org/package=revdbayes>. At the moment only the case where the data can be treated as independent identically distributed observations is considered.
This package provides tools to perform some descriptive data analysis for assets. Manage the portfolio and capital of assets. It also downloads and organizes data from the Tehran Stock Exchange (TSE).
Uses read counts for biallelic single nucleotide polymorphisms (SNPs) to compare the likelihoods for the observed read counts given that a sample is either diploid or triploid. It allows parameters to be specified to account for sequencing error rates and allelic bias. For details of the algorithm, please see Delomas (2019) <doi:10.1111/1755-0998.13073>.
Fits time-dependent shared frailty Cox model (specifically the adapted Paik et al.'s Model) based on the paper "Centre-Effect on Survival After Bone Marrow Transplantation: Application of Time-Dependent Frailty Models", by C.M. Wintrebert, H. Putter, A.H. Zwinderman and J.C. van Houwelingen (2004) <doi:10.1002/bimj.200310051>.
Unit testing is a solid component of automated CI/CD pipelines. tinytest - a lightweight, zero-dependency alternative to testthat was developed. To be able to integrate tinytests results into common CI/CD systems the test results from tinytest need to be caputred and converted to JUnit XML format. tinytest2JUnit enables this conversion while staying also lightweight and only have tinytest as its dependency.
Compositional data consisting of three-parts can be color mapped with a ternary color scale. Such a scale is provided by the tricolore packages with options for discrete and continuous colors, mean-centering and scaling. See Jonas Schöley (2021) "The centered ternary balance scheme. A technique to visualize surfaces of unbalanced three-part compositions" <doi:10.4054/DemRes.2021.44.19>, Jonas Schöley, Frans Willekens (2017) "Visualizing compositional data on the Lexis surface" <doi:10.4054/DemRes.2017.36.21>, and Ilya Kashnitsky, Jonas Schöley (2018) "Regional population structures at a glance" <doi:10.1016/S0140-6736(18)31194-2>.
Routines for nonlinear time series analysis based on Threshold Autoregressive Moving Average (TARMA) models. It provides functions and methods for: TARMA model fitting and forecasting, including robust estimators, see Goracci et al. JBES (2025) <doi:10.1080/07350015.2024.2412011>; tests for threshold effects, see Giannerini et al. JoE (2024) <doi:10.1016/j.jeconom.2023.01.004>, Goracci et al. Statistica Sinica (2023) <doi:10.5705/ss.202021.0120>, Angelini et al. (2024) <doi:10.48550/arXiv.2308.00444>; unit-root tests based on TARMA models, see Chan et al. Statistica Sinica (2024) <doi:10.5705/ss.202022.0125>.
This package provides functions for defining and conducting a time series prediction process including pre(post)processing, decomposition, modelling, prediction and accuracy assessment. The generated models and its yielded prediction errors can be used for benchmarking other time series prediction methods and for creating a demand for the refinement of such methods. For this purpose, benchmark data from prediction competitions may be used.
Generalization of the classification and regression tree (CART) model that partitions subjects into terminal nodes and tailors machine learning model to each terminal node.