Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Nonparametric and semiparametric estimations of the time-dependent ROC curve for an incomplete failure time data with surrogate failure time endpoints.
Some M-estimators for 1-dimensional location (Bisquare, ML for the Cauchy distribution, and the estimators from application of the smoothing principle introduced in Hampel, Hennig and Ronchetti (2011) to the above, the Huber M-estimator, and the median, main function is smoothm), and Pitman estimator.
An implementation of split-population duration regression models. Unlike regular duration models, split-population duration models are mixture models that accommodate the presence of a sub-population that is not at risk for failure, e.g. cancer patients who have been cured by treatment. This package implements Weibull and Loglogistic forms for the duration component, and focuses on data with time-varying covariates. These models were originally formulated in Boag (1949) and Berkson and Gage (1952), and extended in Schmidt and Witte (1989).
Estimation, scoring, and plotting functions for the semi-parametric factor model proposed by Liu & Wang (2022) <doi:10.1007/s11336-021-09832-8> and Liu & Wang (2023) <arXiv:2303.10079>. Both the conditional densities of observed responses given the latent factors and the joint density of latent factors are estimated non-parametrically. Functional parameters are approximated by smoothing splines, whose coefficients are estimated by penalized maximum likelihood using an expectation-maximization (EM) algorithm. E- and M-steps can be parallelized on multi-thread computing platforms that support OpenMP'. Both continuous and unordered categorical response variables are supported.
Network meta-analysis for survival outcome data often involves several studies only involve dichotomized outcomes (e.g., the numbers of event and sample sizes of individual arms). To combine these different outcome data, Woods et al. (2010) <doi:10.1186/1471-2288-10-54> proposed a Bayesian approach using complicated hierarchical models. Besides, frequentist approaches have been alternative standard methods for the statistical analyses of network meta-analysis, and the methodology has been well established. We proposed an easy-to-implement method for the network meta-analysis based on the frequentist framework in Noma and Maruo (2025) <doi:10.1101/2025.01.23.25321051>. This package involves some convenient functions to implement the simple synthesis method.
This package provides a socket server allows to connect clients to R.
The stochastic (also called on-line) version of the Self-Organising Map (SOM) algorithm is provided. Different versions of the algorithm are implemented, for numeric and relational data and for contingency tables as described, respectively, in Kohonen (2001) <isbn:3-540-67921-9>, Olteanu & Villa-Vialaneix (2005) <doi:10.1016/j.neucom.2013.11.047> and Cottrell et al (2004) <doi:10.1016/j.neunet.2004.07.010>. The package also contains many plotting features (to help the user interpret the results), can handle (and impute) missing values and is delivered with a graphical user interface based on shiny'.
Functionality for spatio-temporal modeling of large data sets is provided. A Gaussian process in space and time is defined through a stochastic partial differential equation (SPDE). The SPDE is solved in the spectral space, and after discretizing in time and space, a linear Gaussian state space model is obtained. When doing inference, the main computational difficulty consists in evaluating the likelihood and in sampling from the full conditional of the spectral coefficients, or equivalently, the latent space-time process. In comparison to the traditional approach of using a spatio-temporal covariance function, the spectral SPDE approach is computationally advantageous. See Sigrist, Kuensch, and Stahel (2015) <doi:10.1111/rssb.12061> for more information on the methodology. This package aims at providing tools for two different modeling approaches. First, the SPDE based spatio-temporal model can be used as a component in a customized hierarchical Bayesian model (HBM). The functions of the package then provide parameterizations of the process part of the model as well as computationally efficient algorithms needed for doing inference with the HBM. Alternatively, the adaptive MCMC algorithm implemented in the package can be used as an algorithm for doing inference without any additional modeling. The MCMC algorithm supports data that follow a Gaussian or a censored distribution with point mass at zero. Covariates can be included in the model through a regression term.
This package implements statistical methods for detecting evolutionary shifts in both the optimal trait value (mean) and evolutionary diffusion variance. The method uses an L1-penalized optimization framework to identify branches where shifts occur, and the shift magnitudes. It also supports the inclusion of measurement error. For more details, see Zhang, Ho, and Kenney (2023) <doi:10.48550/arXiv.2312.17480>.
This package provides a multidimensional dataset of students performance assessment in high school physics. The SPHERE dataset was collected from 497 students in four public high schools specifically measuring their conceptual understanding, scientific ability, and attitude toward physics [see Santoso et al. (2024) <doi:10.17632/88d7m2fv7p.1>]. The data collection was conducted using some research based assessments established by the physics education research community. They include the Force Concept Inventory, the Force and Motion Conceptual Evaluation, the Rotational and Rolling Motion Conceptual Survey, the Fluid Mechanics Concept Inventory, the Mechanical Waves Conceptual Survey, the Thermal Concept Evaluation, the Survey of Thermodynamic Processes and First and Second Laws, the Scientific Abilities Assessment Rubrics, and the Colorado Learning Attitudes about Science Survey. Students attributes related to gender, age, socioeconomic status, domicile, literacy, physics identity, and test results administered using teachers developed items are also reported in this dataset.
You can easily add advanced cohort-building component to your analytical dashboard or simple Shiny app. Then you can instantly start building cohorts using multiple filters of different types, filtering datasets, and filtering steps. Filters can be complex and data-specific, and together with multiple filtering steps you can use complex filtering rules. The cohort-building sidebar panel allows you to easily work with filters, add and remove filtering steps. It helps you with handling missing values during filtering, and provides instant filtering feedback with filter feedback plots. The GUI panel is not only compatible with native shiny bookmarking, but also provides reproducible R code.
Handles datetimes as integers for the usage inside Discrete-Event Simulations (DES). The conversion is made using the internally generic function as.numeric() of the base package. DES is described in Simulation Modeling and Analysis by Averill Law and David Kelton (1999) <doi:10.2307/2288169>.
Calculating home ranges and movements of animals in complex stream environments is often challenging, and standard home range estimators do not apply. This package provides a series of tools for assessing movements in a stream network, such as calculating the total length of stream used, distances between points, and movement patterns over time. See Vignette for additional details. This package was originally released on GitHub under the name SNM'. SNMA was developed for analyses in McKnight et al. (2025) <doi:10.3354/esr01442> which contains additional examples and information.
This package provides functions to calculate EBLUPs (Empirical Best Linear Unbiased Predictor) estimators and their MSEs (Mean Squared Errors). Estimators are based on an area-level linear mixed model introduced by Rao and Yu (1994) <doi:10.2307/3315407>. The REML (Residual Maximum Likelihood) method is used for fitting the model.
High dimensional time to events data analysis with variable selection technique. Currently support LASSO, clustering and Bonferroni's correction.
Get sun position, sunlight phases (times for sunrise, sunset, dusk, etc.), moon position and lunar phase for the given location and time. Most calculations are based on the formulas given in Astronomy Answers articles about position of the sun and the planets : <https://www.aa.quae.nl/en/reken/zonpositie.html>.
This package provides a suite of helper functions to support Bayesian Kernel Machine Regression (BKMR) analyses in environmental health research. It enables the simulation of realistic multivariate exposure data using Multivariate Skewed Gamma distributions, estimation of distributional parameters by subgroup, and application of adaptive, data-driven thresholds for feature selection via Posterior Inclusion Probabilities (PIPs). It is especially suited for handling skewed exposure data and enhancing the interpretability of BKMR results through principled variable selection. The methodology is shown in Hasan et. al. (2025) <doi:10.1101/2025.04.14.25325822>.
This package provides a set of Rmarkdown themes for creating scientific and professional documents. Simple interface with features to ease navigation across the page and sub-pages.
Bayesian estimation for undirected graphical models using spike-and-slab priors. The package handles continuous, discrete, and mixed data.
Efficient implementations for Sorted L-One Penalized Estimation (SLOPE): generalized linear models regularized with the sorted L1-norm (Bogdan et al. 2015). Supported models include ordinary least-squares regression, binomial regression, multinomial regression, and Poisson regression. Both dense and sparse predictor matrices are supported. In addition, the package features predictor screening rules that enable fast and efficient solutions to high-dimensional problems.
Hyvärinen's score matching (Hyvärinen, 2005) <https://jmlr.org/papers/v6/hyvarinen05a.html> is a useful estimation technique when the normalising constant for a probability distribution is difficult to compute. This package implements score matching estimators using automatic differentiation in the CppAD library <https://github.com/coin-or/CppAD> and is designed for quickly implementing score matching estimators for new models. Also available is general robustification (Windham, 1995) <https://www.jstor.org/stable/2346159>. Already in the package are estimators for directional distributions (Mardia, Kent and Laha, 2016) <doi:10.48550/arXiv.1604.08470> and the flexible Polynomially-Tilted Pairwise Interaction model for compositional data. The latter estimators perform well when there are zeros in the compositions (Scealy and Wood, 2023) <doi:10.1080/01621459.2021.2016422>, even many zeros (Scealy, Hingee, Kent, and Wood, 2024) <doi:10.1007/s11222-024-10412-w>. A partial interface to CppAD's ADFun objects is also available.
This package provides a computational framework for analyzing mutations in immunoglobulin (Ig) sequences. Includes methods for Bayesian estimation of antigen-driven selection pressure, mutational load quantification, building of somatic hypermutation (SHM) models, and model-dependent distance calculations. Also includes empirically derived models of SHM for both mice and humans. Citations: Gupta and Vander Heiden, et al (2015) <doi:10.1093/bioinformatics/btv359>, Yaari, et al (2012) <doi:10.1093/nar/gks457>, Yaari, et al (2013) <doi:10.3389/fimmu.2013.00358>, Cui, et al (2016) <doi:10.4049/jimmunol.1502263>.
This package implements the Seinhorst model to analyze the relationship between initial nematode densities and plant growth response using nonlinear least squares estimation. The package provides tools for model fitting, prediction, and visualization, facilitating the study of plant-nematode interactions. Model parameters can be estimated or set to predefined values based on Seinhorst (1986) <doi:10.1007/978-1-4613-2251-1_11>.
Generates binary test data based on Item Response Theory using the two-parameter logistic model (Lord, 1980 <doi:10.4324/9780203056615>). Useful functions for test equating are included, e.g. functions for generating internal and external common items between test forms and a function to create a linkage plans between those forms. Ancillary functions for generating true item and person parameters as well as for calculating the probability of a person correctly answering an item are also included.