Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
An implementation of self-exciting point process model for information cascades, which occurs when many people engage in the same acts after observing the actions of others (e.g. post resharings on Facebook or Twitter). It provides functions to estimate the infectiousness of an information cascade and predict its popularity given the observed history. See <http://snap.stanford.edu/seismic/> for more information and datasets.
The goal of snpsettest is to provide simple tools that perform set-based association tests (e.g., gene-based association tests) using GWAS (genome-wide association study) summary statistics. A set-based association test in this package is based on the statistical model described in VEGAS (versatile gene-based association study), which combines the effects of a set of SNPs accounting for linkage disequilibrium between markers. This package uses a different approach from the original VEGAS implementation to compute set-level p values more efficiently, as described in <https://github.com/HimesGroup/snpsettest/wiki/Statistical-test-in-snpsettest>.
Generates data from R or JAGS code for use in simulation studies. The data are returned as an nlist::nlists object and/or saved to file as individual .rds files. Parallelization is implemented using the future package. Progress is reported using the progressr package.
This R package introduces Weighted Mean SHapley Additive exPlanations (WMSHAP), an innovative method for calculating SHAP values for a grid of fine-tuned base-learner machine learning models as well as stacked ensembles, a method not previously available due to the common reliance on single best-performing models. By integrating the weighted mean SHAP values from individual base-learners comprising the ensemble or individual base-learners in a tuning grid search, the package weights SHAP contributions according to each model's performance, assessed by multiple either R squared (for both regression and classification models). alternatively, this software also offers weighting SHAP values based on the area under the precision-recall curve (AUCPR), the area under the curve (AUC), and F2 measures for binary classifiers. It further extends this framework to implement weighted confidence intervals for weighted mean SHAP values, offering a more comprehensive and robust feature importance evaluation over a grid of machine learning models, instead of solely computing SHAP values for the best model. This methodology is particularly beneficial for addressing the severe class imbalance (class rarity) problem by providing a transparent, generalized measure of feature importance that mitigates the risk of reporting SHAP values for an overfitted or biased model and maintains robustness under severe class imbalance, where there is no universal criteria of identifying the absolute best model. Furthermore, the package implements hypothesis testing to ascertain the statistical significance of SHAP values for individual features, as well as comparative significance testing of SHAP contributions between features. Additionally, it tackles a critical gap in feature selection literature by presenting criteria for the automatic feature selection of the most important features across a grid of models or stacked ensembles, eliminating the need for arbitrary determination of the number of top features to be extracted. This utility is invaluable for researchers analyzing feature significance, particularly within severely imbalanced outcomes where conventional methods fall short. Moreover, it is also expected to report democratic feature importance across a grid of models, resulting in a more comprehensive and generalizable feature selection. The package further implements a novel method for visualizing SHAP values both at subject level and feature level as well as a plot for feature selection based on the weighted mean SHAP ratios.
Complex machine learning models are often hard to interpret. However, in many situations it is crucial to understand and explain why a model made a specific prediction. Shapley values is the only method for such prediction explanation framework with a solid theoretical foundation. Previously known methods for estimating the Shapley values do, however, assume feature independence. This package implements methods which accounts for any feature dependence, and thereby produces more accurate estimates of the true Shapley values. An accompanying Python wrapper ('shaprpy') is available through PyPI.
This contains functions that can be used to estimate the time-dependent precision-recall curve (PRC) and the corresponding area under the PRC for right-censored survival data. It also compute time-dependent ROC curve and its corresponding area under the ROC curve (AUC). See Beyene, Chen and Kifle (2024) <doi:10.1002/bimj.202300135>.
GUI for entering test items and obtaining raw and transformed scores. The results are shown on the console and can be saved to a tabular text file for further statistical analysis. The user can define his own tests and scoring procedures through a GUI.
This package provides test statistics, p-value, and confidence intervals based on 9 hypothesis tests for dependence.
An integrated R interface to several United States Census Bureau APIs (<https://www.census.gov/data/developers/data-sets.html>) and the US Census Bureau's geographic boundary files. Allows R users to return Census and ACS data as tidyverse-ready data frames, and optionally returns a list-column with feature geometry for mapping and spatial analysis.
Data filtering module for teal applications. Allows for interactive filtering of data stored in data.frame and MultiAssayExperiment objects. Also displays filtered and unfiltered observation counts.
This package provides tools for constructing and analyzing two-phase experimental designs under correlated error structures. Version 1.1.1 includes improved efficiency factor classification with tolerance control, updated plot visualizations, and improved clarity of the results. The conceptual framework and the term two-phase were introduced by McIntyre (1955) <doi:10.2307/3001770>).
This package implements a decomposition of the two-way fixed effects instrumental variable estimator into all possible Wald difference-in-differences estimators. Provides functions to summarize the contribution of different cohort comparisons to the overall two-way fixed effects instrumental variable estimate, with or without controls. The method is described in Miyaji (2024) <doi:10.48550/arXiv.2405.16467>.
Test functions are often used to test computer code. They are used in optimization to test algorithms and in metamodeling to evaluate model predictions. This package provides test functions that can be used for any purpose.
The typicality and eccentricity data analysis (TEDA) framework was put forward by Angelov (2013) <DOI:10.14313/JAMRIS_2-2014/16>. It has been further developed into multiple different techniques since, and provides a non-parametric way of determining how similar an observation, from a process that is not purely random, is to other observations generated by the process. This package provides code to use the batch and recursive TEDA methods that have been published.
This package provides functions to access historical and real-time national hydrometric data from Water Survey of Canada data sources and then applies tidy data principles.
This package provides a tufte'-alike style for rmarkdown'. A modern take on the Tufte design for pdf and html vignettes, building on the tufte package with additional contributions from the knitr and ggtufte package, and also acknowledging the key influence of envisioned css'.
This package implements geodesic interpolation and basis generation functions that allow you to create new tour methods from R.
R implementation of the software tools developed in the H-CUP (Healthcare Cost and Utilization Project) <https://hcup-us.ahrq.gov> and AHRQ (Agency for Healthcare Research and Quality) <https://www.ahrq.gov>. It currently contains functions for mapping ICD-9 codes to the AHRQ comorbidity measures and translating ICD-9 (resp. ICD-10) codes to ICD-10 (resp. ICD-9) codes based on GEM (General Equivalence Mappings) from CMS (Centers for Medicare and Medicaid Services).
Includes functions for mapping named lists to function arguments, random strings, pasting and combining rows together across columns, etc.
This package contains several utility functions for manipulating tensor-valued data (centering, multiplication from a single mode etc.) and the implementations of the following blind source separation methods for tensor-valued data: tPCA', tFOBI', tJADE', k-tJADE', tgFOBI', tgJADE', tSOBI', tNSS.SD', tNSS.JD', tNSS.TD.JD', tPP and tTUCKER'.
Transformer is a Deep Neural Network Architecture based i.a. on the Attention mechanism (Vaswani et al. (2017) <doi:10.48550/arXiv.1706.03762>).
Offers a TableContainer() function to create tables enriched with row, column, and table annotations. This package is similar to SummarizedExperiment in Bioconductor <doi:10.18129/B9.bioc.SummarizedExperiment>, but designed to work independently of Bioconductor, it ensures annotations are automatically updated when the table is subset. Additionally, it includes format_tbl() methods for enhanced table formatting and display.
Class definitions and constructors for pseudo-vectors containing all permutations, combinations and subsets of objects taken from a vector. Simplifies working with structures commonly encountered in combinatorics.
Matching terminal restriction fragment length polymorphism ('TRFLP') profiles between unknown samples and a database of known samples. TRAMPR facilitates analysis of many unknown profiles at once, and provides tools for working directly with electrophoresis output through to generating summaries suitable for community analyses with R's rich set of statistical functions. TRAMPR also resolves the issues of multiple TRFLP profiles within a species, and shared TRFLP profiles across species.