Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions and Examples in Sample Size Calculation in Clinical Research.
Implementation of ZENIT-POLAR substitution cipher method of encryption using by default the TENIS-POLAR cipher. This last cipher of encryption became famous through the collection of Brazilian books "Os Karas" by the author Pedro Bandeira. For more details, see "A Cryptographic Dictionary" (GC&CS, 1944).
Flexible and ergonomic topological sorting implementation for R. Supports a variety of input data encoding (lists of edges or adjacency matrices, graphs edge direction), stable sort variants as well as cycle detection with detailed diagnosis.
This package provides the estimation of a time-dependent covariance matrix of returns with the intended use for portfolio optimization. The package offers methods for determining the optimal number of factors to be used in the covariance estimation, a hypothesis test of time-varying covariance, and user-friendly functions for portfolio optimization and rolling window evaluation. The local PCA method, method for determining the number of factors, and associated hypothesis test are based on Su and Wang (2017) <doi:10.1016/j.jeconom.2016.12.004>. The approach to time-varying portfolio optimization follows Fan et al. (2024) <doi:10.1016/j.jeconom.2022.08.007>. The regularisation applied to the residual covariance matrix adopts the technique introduced by Chen et al. (2019) <doi:10.1016/j.jeconom.2019.04.025>.
We provide a tidy grammar of population genetics, facilitating the manipulation and analysis of data on biallelic single nucleotide polymorphisms (SNPs). tidypopgen scales to very large genetic datasets by storing genotypes on disk, and performing operations on them in chunks, without ever loading all data in memory. The full functionalities of the package are described in Carter et al. (2025) <doi:10.1111/2041-210x.70204>.
This package implements the template ICA (independent components analysis) model proposed in Mejia et al. (2020) <doi:10.1080/01621459.2019.1679638> and the spatial template ICA model proposed in proposed in Mejia et al. (2022) <doi:10.1080/10618600.2022.2104289>. Both models estimate subject-level brain as deviations from known population-level networks, which are estimated using standard ICA algorithms. Both models employ an expectation-maximization algorithm for estimation of the latent brain networks and unknown model parameters. Includes direct support for CIFTI', GIFTI', and NIFTI neuroimaging file formats.
Feasible Multivariate Generalized Autoregressive Conditional Heteroscedasticity (GARCH) models including Dynamic Conditional Correlation (DCC), Copula GARCH and Generalized Orthogonal GARCH with Generalized Hyperbolic distribution. A review of some of these models can be found in Boudt, Galanos, Payseur and Zivot (2019) <doi:10.1016/bs.host.2019.01.001>.
Computes the test statistics for examining the significance of autocorrelation in univariate time series, cross-correlation in bivariate time series, Pearson correlations in multivariate series and test statistics for i.i.d. property of univariate series given in Dalla, Giraitis and Phillips (2022), <https://www.cambridge.org/core/journals/econometric-theory/article/abs/robust-tests-for-white-noise-and-crosscorrelation/4D77C12C52433F4C6735E584C779403A>, <https://elischolar.library.yale.edu/cowles-discussion-paper-series/57/>.
The total deviation index (TDI) is an unscaled statistical measure used to evaluate the deviation between paired quantitative measurements when assessing the extent of agreement between different raters. It describes a boundary such that a large specified proportion of the differences in paired measurements are within the boundary (Lin, 2000) <https://pubmed.ncbi.nlm.nih.gov/10641028/>. This R package implements some methodologies existing in the literature for TDI estimation and inference in the case of two raters.
This package provides a collection of clinical trial designs and methods, implemented in rstan and R, including: the Continual Reassessment Method by O'Quigley et al. (1990) <doi:10.2307/2531628>; EffTox by Thall & Cook (2004) <doi:10.1111/j.0006-341X.2004.00218.x>; the two-parameter logistic method of Neuenschwander, Branson & Sponer (2008) <doi:10.1002/sim.3230>; and the Augmented Binary method by Wason & Seaman (2013) <doi:10.1002/sim.5867>; and more. We provide functions to aid model-fitting and analysis. The rstan implementations may also serve as a cookbook to anyone looking to extend or embellish these models. We hope that this package encourages the use of Bayesian methods in clinical trials. There is a preponderance of early phase trial designs because this is where Bayesian methods are used most. If there is a method you would like implemented, please get in touch.
An integrated set of extensions to the ergm package to analyze and simulate network evolution based on exponential-family random graph models (ERGM). tergm is a part of the statnet suite of packages for network analysis. See Krivitsky and Handcock (2014) <doi:10.1111/rssb.12014> and Carnegie, Krivitsky, Hunter, and Goodreau (2015) <doi:10.1080/10618600.2014.903087>.
For when your colors absolutely should not be excluded from the narrative.
Uplift modeling aims at predicting the causal effect of an action such as a marketing campaign on a particular individual. In order to simplify the task for practitioners in uplift modeling, we propose a combination of tools that can be separated into the following ingredients: i) quantization, ii) visualization, iii) variable selection, iv) parameters estimation and, v) model validation. For more details, see <https://dms.umontreal.ca/~murua/research/UpliftRegression.pdf>.
This package provides convenience functions for common data modification and analysis tasks in communication research. This includes functions for univariate and bivariate data analysis, index generation and reliability computation, and intercoder reliability tests. All functions follow the style and syntax of the tidyverse, and are construed to perform their computations on multiple variables at once. Functions for univariate and bivariate data analysis comprise summary statistics for continuous and categorical variables, as well as several tests of bivariate association including effect sizes. Functions for data modification comprise index generation and automated reliability analysis of index variables. Functions for intercoder reliability comprise tests of several intercoder reliability estimates, including simple and mean pairwise percent agreement, Krippendorff's Alpha (Krippendorff 2004, ISBN: 9780761915454), and various Kappa coefficients (Brennan & Prediger 1981 <doi: 10.1177/001316448104100307>; Cohen 1960 <doi: 10.1177/001316446002000104>; Fleiss 1971 <doi: 10.1037/h0031619>).
Total variation denoising can be used to approximate a given sequence of noisy observations by a piecewise constant sequence, with adaptively-chosen break points. An efficient linear-time algorithm for total variation denoising is provided here, based on Johnson (2013) <doi:10.1080/10618600.2012.681238>.
This package provides tools to download data series from Banco de España ('BdE') on tibble format. Banco de España is the national central bank and, within the framework of the Single Supervisory Mechanism ('SSM'), the supervisor of the Spanish banking system along with the European Central Bank. This package is in no way sponsored endorsed or administered by Banco de España'.
It is a versatile tool for predicting time series data using Long Short-Term Memory (LSTM) models. It is specifically designed to handle time series with an exogenous variable, allowing users to denote whether data was available for a particular period or not. The package encompasses various functionalities, including hyperparameter tuning, custom loss function support, model evaluation, and one-step-ahead forecasting. With an emphasis on ease of use and flexibility, it empowers users to explore, evaluate, and deploy LSTM models for accurate time series predictions and forecasting in diverse applications. More details can be found in Garai and Paul (2023) <doi:10.1016/j.iswa.2023.200202>.
Interface to TensorFlow Estimators <https://www.tensorflow.org/guide/estimator>, a high-level API that provides implementations of many different model types including linear models and deep neural networks.
Access Open Trade Statistics API from R to download international trade data.
Location-Scale based distributions parameterized in terms of mean, standard deviation, skew and shape parameters and estimation using automatic differentiation. Distributions include the Normal, Student and GED as well as their skewed variants ('Fernandez and Steel'), the Johnson SU', and the Generalized Hyperbolic. Also included is the semi-parametric piece wise distribution ('spd') with Pareto tails and kernel interior.
The Time-Delay Correlation algorithm (TDCor) reconstructs the topology of a gene regulatory network (GRN) from time-series transcriptomic data. The algorithm is described in details in Lavenus et al., Plant Cell, 2015. It was initially developed to infer the topology of the GRN controlling lateral root formation in Arabidopsis thaliana. The time-series transcriptomic dataset which was used in this study is included in the package to illustrate how to use it.
This package provides a simple wrapper around the Telegram Bot API (<https://core.telegram.org/bots/api>) to access Telegram's messaging facilities with ease (e.g. you send messages, images, files from R to your smartphone).
Simple toolkit for working with TOML text. Based on tomledit which allows for modifying TOML while preserving order, comments,and whitespace.
Travel Time API <https://docs.traveltime.com/api/overview/introduction> helps users find locations by journey time rather than using â as the crow fliesâ distance. Time-based searching gives users more opportunities for personalisation and delivers a more relevant search.