Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Tensor-train is a compact representation for higher-order tensors. Some algorithms for performing tensor-train decomposition are available such as TT-SVD, TT-WOPT, and TT-Cross. For the details of the algorithms, see I. V. Oseledets (2011) <doi:10.1137/090752286>, Yuan Longao, et al (2017) <doi:10.48550/arXiv.1709.02641>, I. V. Oseledets (2010) <doi:10.1016/j.laa.2009.07.024>.
This package provides functions to produce, fit and predict from bipartite networks with abundance, trait and phylogenetic information. Its methods are described in detail in Benadi, G., Dormann, C.F., Fruend, J., Stephan, R. & Vazquez, D.P. (2021) Quantitative prediction of interactions in bipartite networks based on traits, abundances, and phylogeny. The American Naturalist, in press.
Operators and functions provided by base R sometimes lack some features found in other programming languages, such as the ability to concatenate strings using + or to repeat strings using *. This package aims at providing such functionality without breaking existing code, i.e., only statements, that would throw errors in pure base R are patched.
This package implements marginal structural models combined with a latent class growth analysis framework for assessing the causal effect of treatment trajectories. Based on the approach described in "Marginal Structural Models with Latent Class Growth Analysis of Treatment Trajectories" Diop, A., Sirois, C., Guertin, J.R., Schnitzer, M.E., Candas, B., Cossette, B., Poirier, P., Brophy, J., Mésidor, M., Blais, C. and Hamel, D., (2023) <doi:10.1177/09622802231202384>.
Facilitate the movement between data frames to xts'. Particularly useful when moving from tidyverse to the widely used xts package, which is the input format of choice to various other packages. It also allows the user to use a spread_by argument for a character column xts conversion.
Fit Thurstonian forced-choice models (CFA (simple and factor) and IRT) in R. This package allows for the analysis of item response modeling (IRT) as well as confirmatory factor analysis (CFA) in the Thurstonian framework. Currently, estimation can be performed by Mplus and lavaan'. References: Brown & Maydeu-Olivares (2011) <doi:10.1177/0013164410375112>; Jansen, M. T., & Schulze, R. (in review). The Thurstonian linked block design: Improving Thurstonian modeling for paired comparison and ranking data.; Maydeu-Olivares & Böckenholt (2005) <doi:10.1037/1082-989X.10.3.285>.
This contains functions that can be used to estimate the time-dependent precision-recall curve (PRC) and the corresponding area under the PRC for right-censored survival data. It also compute time-dependent ROC curve and its corresponding area under the ROC curve (AUC). See Beyene, Chen and Kifle (2024) <doi:10.1002/bimj.202300135>.
Bringing business and financial analysis to the tidyverse'. The tidyquant package provides a convenient wrapper to various xts', zoo', quantmod', TTR and PerformanceAnalytics package functions and returns the objects in the tidy tibble format. The main advantage is being able to use quantitative functions with the tidyverse functions including purrr', dplyr', tidyr', ggplot2', lubridate', etc. See the tidyquant website for more information, documentation and examples.
TidyTuesday is a project by the Data Science Learning Community in which they post a weekly dataset in a public data repository (<https://github.com/rfordatascience/tidytuesday>) for people to analyze and visualize. This package provides the tools to easily download this data and the description of the source.
This package implements Bayesian methods, described in Hugh-Jones (2019) <doi:10.1007/s40881-019-00069-x>, for estimating the proportion of liars in coin flip-style experiments, where subjects report a random outcome and are paid for reporting a "good" outcome.
An open-access tool/framework that constitutes the core functions to analyze terrestrial water cycle data across various spatio-temporal scales.
Deconvolving thermoluminescence glow curves according to various kinetic models (first-order, second-order, general-order, and mixed-order) using a modified Levenberg-Marquardt algorithm (More, 1978) <DOI:10.1007/BFb0067700>. It provides the possibility of setting constraints or fixing any of parameters. It offers an interactive way to initialize parameters by clicking with a mouse on a plot at positions where peak maxima should be located. The optimal estimate is obtained by "trial-and-error". It also provides routines for simulating first-order, second-order, and general-order glow peaks.
Delta Method implementation to estimate standard errors with known asymptotic properties within the tidyverse workflow. The Delta Method is a statistical tool that approximates an estimatorâ s behaviour using a Taylor Expansion. For a comprehensive explanation, please refer to Chapter 3 of van der Vaart (1998, ISBN: 9780511802256).
Takes objects of class edsurvey.data.frame and converts them to a data.frame within the calling environment of dplyr and ggplot2 functions. Additionally, for plotting with ggplot2', users can map aesthetics to subject scales and all plausible values will be used. This package supports student level data; to work with school or teacher level data, see ?EdSurvey::getData'.
This package provides a shared tsibble data easily communicates between htmlwidgets on both client and server sides, powered by crosstalk'. A shiny module is provided to visually explore periodic/aperiodic temporal patterns.
This is a collection of functions optimized for working with with various kinds of text matrices. Focusing on the text matrix as the primary object - represented either as a base R dense matrix or a Matrix package sparse matrix - allows for a consistent and intuitive interface that stays close to the underlying mathematical foundation of computational text analysis. In particular, the package includes functions for working with word embeddings, text networks, and document-term matrices. Methods developed in Stoltz and Taylor (2019) <doi:10.1007/s42001-019-00048-6>, Taylor and Stoltz (2020) <doi:10.1007/s42001-020-00075-8>, Taylor and Stoltz (2020) <doi:10.15195/v7.a23>, and Stoltz and Taylor (2021) <doi:10.1016/j.poetic.2021.101567>.
This package implements the TRUH test statistic for two sample testing under heterogeneity. TRUH incorporates the underlying heterogeneity and imbalance in the samples, and provides a conservative test for the composite null hypothesis that the two samples arise from the same mixture distribution but may differ with respect to the mixing weights. See Trambak Banerjee, Bhaswar B. Bhattacharya, Gourab Mukherjee Ann. Appl. Stat. 14(4): 1777-1805 (December 2020). <DOI:10.1214/20-AOAS1362> for more details.
This package provides new layer functions to tmap for drawing glyphs. A glyph is a small chart (e.g., donut chart) shown at specific map locations to visualize multivariate or time-series data. The functions work with the syntax of tmap and allow flexible control over size, layout, and appearance.
This package provides a simple Natural Language Processing (NLP) toolkit focused on search-centric workflows with minimal dependencies. The package offers key features for web scraping, text processing, corpus search, and text embedding generation via the HuggingFace API <https://huggingface.co/docs/api-inference/index>.
This package provides a clinically meaningful measures of treatment effects for right-censored data are provided, based on the concept of Kendall's tau, along with the corresponding inference procedures. Two plots of tau processes, with the option to account for the cure fraction or not, are available. The plots of tau processes serve as useful graphical tools for monitoring the relative performances over time.
We propose an optimality criterion to determine the required training set, r-score, which is derived directly from Pearson's correlation between the genomic estimated breeding values and phenotypic values of the test set <doi:10.1007/s00122-019-03387-0>. This package provides two main functions to determine a good training set and its size.
The eigenvalues of observed symmetric matrices are often of intense scientific interest. This package offers single sample tests for the eigenvalues of the population mean or the eigenvalue-multiplicity of the population mean. For k-samples, this package offers tests for equal eigenvalues between samples. Included is support for matrices with constraints common to geophysical tensors (constant trace, sum of squared eigenvalues, or both) and eigenvectors are usually considered nuisance parameters. Pivotal bootstrap methods enable these tests to have good performance for small samples (n=15 for 3x3 matrices). These methods were developed and studied by Hingee, Scealy and Wood (2026, "Nonparametric bootstrap inference for the eigenvalues of geophysical tensors", accepted by the Journal of American Statistical Association). Also available is a 2-sample test using a Gaussian orthogonal ensemble approximation and an eigenvalue-multiplicity test that assumes orthogonally-invariant covariance.
This analytical framework is based on an analysis of the shape of the trait abundance distributions to better understand community assembly processes, and predict community dynamics under environmental changes. This framework mobilized a study of the relationship between the moments describing the shape of the distributions: the skewness and the kurtosis (SKR). The SKR allows the identification of commonalities in the shape of trait distributions across contrasting communities. Derived from the SKR, we developed mathematical parameters that summarise the complex pattern of distributions by assessing (i) the R², (ii) the Y-intercept, (iii) the slope, (iv) the functional stability of community (TADstab), and, (v) the distance from specific distribution families (i.e., the distance from the skew-uniform family a limit to the highest degree of evenness: TADeve).
Objects to manipulate sequential and seasonal time series. Sequential time series based on time instants and time duration are handled. Both can be regularly or unevenly spaced (overlapping duration are allowed). Only POSIX* format are used for dates and times. The following classes are provided : POSIXcti', POSIXctp', TimeIntervalDataFrame', TimeInstantDataFrame', SubtimeDataFrame ; methods to switch from a class to another and to modify the time support of series (hourly time series to daily time series for instance) are also defined. Tools provided can be used for instance to handle environmental monitoring data (not always produced on a regular time base).