Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Nonlinear growth models are extremely useful in gaining insight into the underlying mechanism. These models are generally mechanistic, with parameters that have biological meaning. This package allows you to fit and forecast time series data using nonlinear growth models.
This package provides a system for personalized exercise plan recommendations for T2D (Type 2 Diabetes) patients based on the primary outcome of HbA1c (Glycated Hemoglobin). You provide the individual's information, and T2DFitTailor details the exercise plan and predicts the intervention's effectiveness.
This package provides a set of functions that allow users for styling their R code according to the tidyverse style guide. The package uses a native Rust implementation to ensure the highest performance. Learn more about tergo at <https://rtergo.pagacz.io>.
Find the optimal decision rules (AKA progression criteria) and sample size for clinical trials with three (stop/pause/go) outcomes. Both binary and continuous endpoints can be accommodated, as can cases where an adjustment is planned following a pause outcome. For more details see Wilson et al. (2024) <doi:10.1186/s12874-024-02351-x>.
This package provides tidyverse methods for wrangling and analyzing Earth Engine <https://earthengine.google.com/> data. These methods help the user with filtering, joining and summarising Earth Engine image collections.
Construction of the Total Operating Characteristic (TOC) Curve and the Receiver (aka Relative) Operating Characteristic (ROC) Curve for spatial and non-spatial data. The TOC method is a modification of the ROC method which measures the ability of an index variable to diagnose either presence or absence of a characteristic. The diagnosis depends on whether the value of an index variable is above a threshold. Each threshold generates a two-by-two contingency table, which contains four entries: hits (H), misses (M), false alarms (FA), and correct rejections (CR). While ROC shows for each threshold only two ratios, H/(H + M) and FA/(FA + CR), TOC reveals the size of every entry in the contingency table for each threshold (Pontius Jr., R.G., Si, K. 2014. <doi:10.1080/13658816.2013.862623>).
This package implements the truncated harmonic mean estimator (THAMES) of the reciprocal marginal likelihood using posterior samples and unnormalized log posterior values via reciprocal importance sampling. Metodiev, Perrot-Dockès, Ouadah, Irons, Latouche, & Raftery (2024). Bayesian Analysis. <doi:10.1214/24-BA1422>.
Unsupervised text tokenizer focused on computational efficiency. Wraps the YouTokenToMe library <https://github.com/VKCOM/YouTokenToMe> which is an implementation of fast Byte Pair Encoding (BPE) <https://aclanthology.org/P16-1162/>.
This package provides a crawler for programmatically navigating THREDDS Data Server (<https://www.unidata.ucar.edu/software/tds/>) catalogs, and access dataset metadata and resources.
Bayesian trophic position models using stan by leveraging brms for stable isotope data. Trophic position models are derived by using equations from Post (2002) <doi:10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2>, Vander Zanden and Vadeboncoeur (2002) <doi:10.1890/0012-9658(2002)083[2152:FAIOBA]2.0.CO;2>, and Heuvel et al. (2024) <doi:10.1139/cjfas-2024-0028>.
Implementation and forecasting univariate time series data using the Support Vector Machine model. Support Vector Machine is one of the prominent machine learning approach for non-linear time series forecasting. For method details see Kim, K. (2003) <doi:10.1016/S0925-2312(03)00372-2>.
When plotting treated-minus-control differences, after-minus-before changes, or difference-in-differences, the ttrans() function symmetrically transforms the positive and negative tails to aid plotting. The package includes an observational study with three control groups and an unaffected outcome; see Rosenbaum (2022) <doi:10.1080/00031305.2022.2063944>.
This package provides a new measure of similarity between a pair of mass spectrometry (MS) experiments, called truncated rank correlation (TRC). To provide a robust metric of similarity in noisy high-dimensional data, TRC uses truncated top ranks (or top m-ranks) for calculating correlation. Truncated rank correlation as a robust measure of test-retest reliability in mass spectrometry data. For more details see Lim et al. (2019) <doi:10.1515/sagmb-2018-0056>.
An R shiny app designed for diverse text analysis tasks, offering a wide range of methodologies tailored to Natural Language Processing (NLP) needs. It is a versatile, general-purpose tool for analyzing textual data. tall features a comprehensive workflow, including data cleaning, preprocessing, statistical analysis, and visualization, all integrated for effective text analysis.
Tightens an observational block design into a smaller design with either smaller or fewer blocks while controlling for covariates. The method uses fine balance, optimal subset matching (Rosenbaum, 2012 <doi:10.1198/jcgs.2011.09219>) and two-criteria matching (Zhang et al 2023 <doi:10.1080/01621459.2021.1981337>). The main function is tighten(). The suggested rrelaxiv package for solving minimum cost flow problems: (i) derives from Bertsekas and Tseng (1988) <doi:10.1007/BF02288322>, (ii) is not available on CRAN due to its academic license, (iii) may be downloaded from GitHub at <https://github.com/josherrickson/rrelaxiv/>, (iv) is not essential to use the package.
Fitting tree-structured varying coefficient models (Berger et al. (2019), <doi:10.1007/s11222-018-9804-8>). Simultaneous detection of covariates with varying coefficients and effect modifiers that induce varying coefficients if they are present.
Estimators for two functionals used to detect Gamma, Pareto or Lognormal distributions, as well as distributions exhibiting similar tail behavior, as introduced by Iwashita and Klar (2023) <doi:10.1111/stan.12316> and Klar (2024) <doi:10.1080/00031305.2024.2413081>. One of these functionals, g, originally proposed by Asmussen and Lehtomaa (2017) <doi:10.3390/risks5010010>, distinguishes between log-convex and log-concave tail behavior. Furthermore the characterization of the lognormal distribution is based on the work of Mosimann (1970) <doi:10.2307/2284599>. The package also includes methods for visualizing these estimators and their associated confidence intervals across various threshold values.
Defines the classes used to identify outliers (threshing) and compute the number of significant principal components and number of clusters (reaping) in a joint application of PCA and hierarchical clustering. See Wang et al., 2018, <doi:10.1186/s12859-017-1998-9>.
This package provides a general regression neural network (GRNN) is a variant of a Radial Basis Function Network characterized by a fast single-pass learning. tsfgrnn allows you to forecast time series using a GRNN model Francisco Martinez et al. (2019) <doi:10.1007/978-3-030-20521-8_17> and Francisco Martinez et al. (2022) <doi:10.1016/j.neucom.2021.12.028>. When the forecasting horizon is higher than 1, two multi-step ahead forecasting strategies can be used. The model built is autoregressive, that is, it is only based on the observations of the time series. You can consult and plot how the prediction was done. It is also possible to assess the forecasting accuracy of the model using rolling origin evaluation.
Streamline the processing of Telraam data, sourced from open data mobility sensors. These tools range from data retrieval (without the need for API knowledge) to data visualization, including data preprocessing.
Utilities for handling character vectors that store human-readable text (either plain or with markup, such as HTML or LaTeX). The package provides, in particular, functions that help with the preparation of plain-text reports, e.g. for expanding and aligning strings that form the lines of such reports. The package also provides generic functions for transforming R objects to HTML and to plain text.
Return the first four moments of the SMN distributions (Normal, Student-t, Pearson VII, Slash or Contaminated Normal).
Changepoint detection algorithms for R are widespread but have different interfaces and reporting conventions. This makes the comparative analysis of results difficult. We solve this problem by providing a tidy, unified interface for several different changepoint detection algorithms. We also provide consistent numerical and graphical reporting leveraging the broom and ggplot2 packages.