Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Interface to TensorFlow <https://www.tensorflow.org/>, an open source software library for numerical computation using data flow graphs. Nodes in the graph represent mathematical operations, while the graph edges represent the multidimensional data arrays (tensors) communicated between them. The flexible architecture allows you to deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device with a single API'. TensorFlow was originally developed by researchers and engineers working on the Google Brain Team within Google's Machine Intelligence research organization for the purposes of conducting machine learning and deep neural networks research, but the system is general enough to be applicable in a wide variety of other domains as well.
Different multiple testing procedures for correlation tests are implemented. These procedures were shown to theoretically control asymptotically the Family Wise Error Rate (Roux (2018) <https://tel.archives-ouvertes.fr/tel-01971574v1>) or the False Discovery Rate (Cai & Liu (2016) <doi:10.1080/01621459.2014.999157>). The package gather four test statistics used in correlation testing, four FWER procedures with either single step or stepdown versions, and four FDR procedures.
This package provides the estimation of a time-dependent covariance matrix of returns with the intended use for portfolio optimization. The package offers methods for determining the optimal number of factors to be used in the covariance estimation, a hypothesis test of time-varying covariance, and user-friendly functions for portfolio optimization and rolling window evaluation. The local PCA method, method for determining the number of factors, and associated hypothesis test are based on Su and Wang (2017) <doi:10.1016/j.jeconom.2016.12.004>. The approach to time-varying portfolio optimization follows Fan et al. (2024) <doi:10.1016/j.jeconom.2022.08.007>. The regularisation applied to the residual covariance matrix adopts the technique introduced by Chen et al. (2019) <doi:10.1016/j.jeconom.2019.04.025>.
Compose data for and extract, manipulate, and visualize posterior draws from Bayesian models ('JAGS', Stan', rstanarm', brms', MCMCglmm', coda', ...) in a tidy data format. Functions are provided to help extract tidy data frames of draws from Bayesian models and that generate point summaries and intervals in a tidy format. In addition, ggplot2 geoms and stats are provided for common visualization primitives like points with multiple uncertainty intervals, eye plots (intervals plus densities), and fit curves with multiple, arbitrary uncertainty bands.
This package provides functions for estimating times of common ancestry and molecular clock rates of evolution using a variety of evolutionary models, parametric and nonparametric bootstrap confidence intervals, methods for detecting outlier lineages, root-to-tip regression, and a statistical test for selecting molecular clock models. For more details see Volz and Frost (2017) <doi:10.1093/ve/vex025>.
This package provides functions for admin needs of employees of Thomas Jefferson University and Thomas Jefferson University Hospital, Philadelphia, PA.
This package provides tools for the exploration of distributions of phylogenetic trees. This package includes a shiny interface which can be started from R using treespaceServer(). For further details see Jombart et al. (2017) <DOI:10.1111/1755-0998.12676>.
Measure text's sentiment with dictionaries and simple rules covering negations and modifiers. User-supplied dictionaries are supported, including Unicode emojis and multi-word tokens, so this package can also be used to study constructs beyond sentiment.
Differentiate client errors (4xx) from server errors (5xx) for the plumber and RestRserve HTTP API frameworks. The package also includes a built-in logging mechanism to standard output (STDOUT) or standard error (STDERR) depending on the log level.
This package provides functions for propensity score estimation and weighting for continuous exposures as described in Zhu, Y., Coffman, D. L., & Ghosh, D. (2015). A boosting algorithm for estimating generalized propensity scores with continuous treatments. Journal of Causal Inference, 3(1), 25-40. <doi:10.1515/jci-2014-0022>.
An R wrapper for using TooManyCells', a command line program for clustering, visualizing, and quantifying cell clade relationships. See <https://gregoryschwartz.github.io/too-many-cells/> for more details.
Convert T Cell Receptor (TCR) gene names between the 10X Genomics, Adaptive Biotechnologies, and ImMunoGeneTics (IMGT) nomenclatures.
Builds tables with customizable rows. Users can specify the type of data to use for each row, as well as how to handle missing data and the types of comparison tests to run on the table columns.
This package provides a pipeline for short tandem repeat instability analysis from fragment analysis data. Inputs of fsa files or peak tables, and a user supplied metadata data-frame. The package identifies ladders, calls peaks, identifies the modal peaks, calls repeats, then calculates repeat instability metrics (e.g. expansion index from Lee et al. (2010) <doi:10.1186/1752-0509-4-29>).
This package creates a local database of many commonly used taxonomic authorities and provides functions that can quickly query this data.
Two stage curvature identification with machine learning for causal inference in settings when instrumental variable regression is not suitable because of potentially invalid instrumental variables. Based on Guo and Buehlmann (2022) "Two Stage Curvature Identification with Machine Learning: Causal Inference with Possibly Invalid Instrumental Variables" <doi:10.48550/arXiv.2203.12808>. The vignette is available in Carl, Emmenegger, Bühlmann and Guo (2025) "TSCI: Two Stage Curvature Identification for Causal Inference with Invalid Instruments in R" <doi:10.18637/jss.v114.i07>.
Disaggregates low frequency time series data to higher frequency series. Implements the following methods for temporal disaggregation: Boot, Feibes and Lisman (1967) <DOI:10.2307/2985238>, Chow and Lin (1971) <DOI:10.2307/1928739>, Fernandez (1981) <DOI:10.2307/1924371> and Litterman (1983) <DOI:10.2307/1391858>.
This package provides a simple type annotation for R that is usable in scripts, in the R console and in packages. It is intended as a convention to allow other packages to use the type information to provide error checking, automatic documentation or optimizations.
Calculates total survey error (TSE) for a survey under multiple, different weighting schemes, using both scale-dependent and scale-independent metrics. Package works directly from the data set, with no hand calculations required: just upload a properly structured data set (see TESTWGT and its documentation), properly input column names (see functions documentation), and run your functions. For more on TSE, see: Weisberg, Herbert (2005, ISBN:0-226-89128-3); Biemer, Paul (2010) <doi:10.1093/poq/nfq058>; Biemer, Paul et.al. (2017, ISBN:9781119041672); etc.
This package implements simulated tests for the hypothesis that terminal digits are uniformly distributed (chi-squared goodness-of-fit) and the hypothesis that terminal digits are independent from preceding digits (several tests of independence for r x c contingency tables). Also, for a number of distributions, implements Monte Carlo simulations for type I errors and power for the test of independence.
Various methods for targeted and semiparametric inference including augmented inverse probability weighted (AIPW) estimators for missing data and causal inference (Bang and Robins (2005) <doi:10.1111/j.1541-0420.2005.00377.x>), variable importance and conditional average treatment effects (CATE) (van der Laan (2006) <doi:10.2202/1557-4679.1008>), estimators for risk differences and relative risks (Richardson et al. (2017) <doi:10.1080/01621459.2016.1192546>), assumption lean inference for generalized linear model parameters (Vansteelandt et al. (2022) <doi:10.1111/rssb.12504>).
This package provides a collection of functions for Kronecker structured covariance estimation and testing under the array normal model. For estimation, maximum likelihood and Bayesian equivariant estimation procedures are implemented. For testing, a likelihood ratio testing procedure is available. This package also contains additional functions for manipulating and decomposing tensor data sets. This work was partially supported by NSF grant DMS-1505136. Details of the methods are described in Gerard and Hoff (2015) <doi:10.1016/j.jmva.2015.01.020> and Gerard and Hoff (2016) <doi:10.1016/j.laa.2016.04.033>.
Data collected on movement behavior is often in the form of time- stamped latitude/longitude coordinates sampled from the underlying movement behavior. These data can be compressed into a set of segments via the Top- Down Time Ratio Segmentation method described in Meratnia and de By (2004) <doi:10.1007/978-3-540-24741-8_44> which, with some loss of information, can both reduce the size of the data as well as provide corrective smoothing mechanisms to help reduce the impact of measurement error. This is an improvement on the well-known Douglas-Peucker algorithm for segmentation that operates not on the basis of perpendicular distances. Top-Down Time Ratio segmentation allows for disparate sampling time intervals by calculating the distance between locations and segments with respect to time. Provided a trajectory with timestamps, tdtr() returns a set of straight- line segments that can represent the full trajectory. McCool, Lugtig, and Schouten (2022) <doi:10.1007/s11116-022-10328-2> describe this method as implemented here in more detail.
Articles in the R Journal were first authored in LaTeX', which performs admirably for PDF files but is less than ideal for modern online interfaces. The texor package does all the transitional chores and conversions necessary to move to the online versions.