Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions for statistical analysis, modeling and simulation of time series with state space model, based on the methodology in Kitagawa (2020, ISBN: 978-0-367-18733-0).
Extension of the tidyverse for SpatRaster and SpatVector objects of the terra package. It includes also new geom_ functions that provide a convenient way of visualizing terra objects with ggplot2'.
Tree Ring Analysis of Disturbance Events in R (TRADER) package provides functions for disturbance reconstruction from tree-ring data, e.g. boundary line, absolute increase, growth averaging methods.
The functions needed to perform tight clustering Algorithm.
The trigger strategy is a general framework for a multistage statistical design with multiple hypotheses, allowing an adaptive selection of interim analyses. The selection of interim stages can be associated with some prespecified endpoints which serve as the trigger. This selection allows us to refine the critical boundaries in hypotheses testing procedures, and potentially increase the statistical power. This package includes several trial designs using the trigger strategy. See Gou, J. (2023), "Trigger strategy in repeated tests on multiple hypotheses", Statistics in Biopharmaceutical Research, 15(1), 133-140, and Gou, J. (2022), "Sample size optimization and initial allocation of the significance levels in group sequential trials with multiple endpoints", Biometrical Journal, 64(2), 301-311.
Provide a range of functions with multiple criteria for cutting phylogenetic trees at any evolutionary depth. It enables users to cut trees in any orientation, such as rootwardly (from root to tips) and tipwardly (from tips to its root), or allows users to define a specific time interval of interest. It can also be used to create multiple tree pieces of equal temporal width. Moreover, it allows the assessment of novel temporal rates for various phylogenetic indexes, which can be quickly displayed graphically.
Download geographic shapes from the United States Census Bureau TIGER/Line Shapefiles <https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html>. Functions support downloading and reading in geographic boundary data. All downloads can be set up with a cache to avoid multiple downloads. Data is available back to 2000 for most geographies.
Two one-sided tests (TOST) procedure to test equivalence for t-tests, correlations, differences between proportions, and meta-analyses, including power analysis for t-tests and correlations. Allows you to specify equivalence bounds in raw scale units or in terms of effect sizes. See: Lakens (2017) <doi:10.1177/1948550617697177>.
Fit Thurstonian forced-choice models (CFA (simple and factor) and IRT) in R. This package allows for the analysis of item response modeling (IRT) as well as confirmatory factor analysis (CFA) in the Thurstonian framework. Currently, estimation can be performed by Mplus and lavaan'. References: Brown & Maydeu-Olivares (2011) <doi:10.1177/0013164410375112>; Jansen, M. T., & Schulze, R. (in review). The Thurstonian linked block design: Improving Thurstonian modeling for paired comparison and ranking data.; Maydeu-Olivares & Böckenholt (2005) <doi:10.1037/1082-989X.10.3.285>.
Combine a list of taxa with a phylogeny to generate a starting tree for use in total evidence dating analyses.
This package provides a hypothesis test and variable selection algorithm for use in time-varying, concurrent regression models. The hypothesis test function is also accompanied by a plotting function which will show the estimated beta(s) and confidence band(s) from the hypothesis test. The hypothesis test function helps the user identify significant covariates within the scope of a time-varying concurrent model. The plots will show the amount of area that falls outside the confidence band(s) which is used for the test statistic within the hypothesis test.
Sometimes you need to split your data and work on the two chunks independently before bringing them back together. Taber allows you to do that with its two functions.
Calculates empirical TL-moments (trimmed L-moments) of arbitrary order and trimming, and converts them to distribution parameters.
Package test2norm contains functions to generate formulas for normative standards applied to cognitive tests. It takes raw test scores (e.g., number of correct responses) and converts them to scaled scores and demographically adjusted scores, using methods described in Heaton et al. (2003) <doi:10.1016/B978-012703570-3/50010-9> & Heaton et al. (2009, ISBN:9780199702800). The scaled scores are calculated as quantiles of the raw test scores, scaled to have the mean of 10 and standard deviation of 3, such that higher values always correspond to better performance on the test. The demographically adjusted scores are calculated from the residuals of a model that regresses scaled scores on demographic predictors (e.g., age). The norming procedure makes use of the mfp2() function from the mfp2 package to explore nonlinear associations between cognition and demographic variables.
Helps the R users to get data from Tushare Pro'<https://tushare.pro>. Tushare Pro is a platform as well as a community with a lot of staffs working in financial area. We support financial data such as stock price, financial report statements and digital coins data.
Autoregressive distributed lag (A[R]DL) models (and their reparameterized equivalent, the Generalized Error-Correction Model [GECM]) (see De Boef and Keele 2008 <doi:10.1111/j.1540-5907.2007.00307.x>) are the workhorse models in uncovering dynamic inferences. ADL models are simple to estimate; this is what makes them attractive. Once these models are estimated, what is less clear is how to uncover a rich set of dynamic inferences from these models. We provide tools for recovering those inferences in three forms: causal inferences from ADL models, traditional time series quantities of interest (short- and long-run effects), and dynamic conditional relationships.
This package implements inverse and augmented inverse probability weighted estimators for common treatment effect parameters at an interim analysis with time-lagged outcome that may not be available for all enrolled subjects. Produces estimators, standard errors, and information that can be used to compute stopping boundaries using software that assumes that the estimators/test statistics have independent increments. Tsiatis, A. A. and Davidian, M., (2022) <doi:10.1002/sim.9580> .
This package provides a specialization of dplyr data manipulation verbs that parse and build expressions which are ultimately evaluated by data.table', letting it handle all optimizations. A set of additional verbs is also provided to facilitate some common operations on a subset of the data.
Fit two-part regression models for zero-inflated data. The models and their components are represented using S4 classes and methods. Average Marginal effects and predictive margins with standard errors and confidence intervals can be calculated from two-part model objects. Belotti, F., Deb, P., Manning, W. G., & Norton, E. C. (2015) <doi:10.1177/1536867X1501500102>.
Estimation of models for truncated Gaussian variables by maximum likelihood.
Estimation of group-based trajectory models, including finite mixture models for longitudinal data, supporting censored normal, zero-inflated Poisson, logit, and beta distributions, using expectation-maximization and quasi-Newton methods, with tools for model selection, diagnostics, and visualization of latent trajectory groups, <doi:10.4159/9780674041318>, Nagin, D. (2005). Group-Based Modeling of Development. Cambridge, MA: Harvard University Press. and Noel (2022), <https://orbilu.uni.lu/>, thesis.
These functions generate data frames on troop deployments and military basing using U.S. Department of Defense data on overseas military deployments. This package provides functions for pulling country-year troop deployment and basing data. Subsequent versions will hopefully include cross-national data on deploying countries.
This package provides functions for propensity score estimating and weighting, nonresponse weighting, and diagnosis of the weights.
This package provides a complete data set of historic GB trig points in British National Grid (OSGB36) coordinate reference system. Trig points (aka triangulation stations) are fixed survey points used to improve the accuracy of map making in Great Britain during the 20th Century. Trig points are typically located on hilltops so still serve as a useful navigational aid for walkers and hikers today.