Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Datasets from Yotov, et al. (2016, ISBN:978-92-870-4367-2) "An Advanced Guide to Trade Policy Analysis" and functions to report regression summaries with clustered robust standard errors.
Overall predictive performance is measured by a mean score (or loss), which decomposes into miscalibration, discrimination, and uncertainty components. The main focus is visualization of these distinct and complementary aspects in joint displays. See Dimitriadis, Gneiting, Jordan, Vogel (2024) <doi:10.1016/j.ijforecast.2023.09.007>.
The 1311 time series from the tourism forecasting competition conducted in 2010 and described in Athanasopoulos et al. (2011) <DOI:10.1016/j.ijforecast.2010.04.009>.
This package provides functions for the selection of thresholds for use in extreme value models, based mainly on the methodology in Northrop, Attalides and Jonathan (2017) <doi:10.1111/rssc.12159>. It also performs predictive inferences about future extreme values, based either on a single threshold or on a weighted average of inferences from multiple thresholds, using the revdbayes package <https://cran.r-project.org/package=revdbayes>. At the moment only the case where the data can be treated as independent identically distributed observations is considered.
This package provides rolling statistical functions based on date and time windows instead of n-lagged observations.
This package provides a toolbox for comparing two data frames. This package is defunct. I recommend you use the "versus" package instead.
An implementation that combines trait data and a phylogenetic tree (or trees) into a single object of class treedata.table'. The resulting object can be easily manipulated to simultaneously change the trait- and tree-level sampling. Currently implemented functions allow users to use a data.table syntax when performing operations on the trait dataset within the treedata.table object. For more details see Roman-Palacios et al. (2021) <doi:10.7717/peerj.12450>.
This package provides a collection of functions for data analysis with two-by-two contingency tables. The package provides tools to compute measures of effect (odds ratio, risk ratio, and risk difference), calculate impact numbers and attributable fractions, and perform hypothesis testing. Statistical analysis methods are oriented towards epidemiological investigation of relationships between exposures and outcomes.
Algorithms for accelerating the convergence of slow, monotone sequences from smooth, contraction mapping such as the EM and MM algorithms. It can be used to accelerate any smooth, linearly convergent acceleration scheme. A tutorial style introduction to this package is available in a vignette on the CRAN download page or, when the package is loaded in an R session, with vignette("turboEM").
Email Finder R Client Library. Search emails are based on the website You give one domain name and it returns all the email addresses found on the internet. Email Finder generates or retrieves the most likely email address from a domain name, a first name and a last name. Email verify checks the deliverability of a given email address, verifies if it has been found in our database, and returns their sources.
This package provides a novel feature-wise normalization method based on a zero-inflated negative binomial model. This method assumes that the effects of sequencing depth vary for each taxon on their mean and also incorporates a rational link of zero probability and taxon dispersion as a function of sequencing depth. Ziyue Wang, Dillon Lloyd, Shanshan Zhao, Alison Motsinger-Reif (2023) <doi:10.1101/2023.10.31.563648>.
Includes functions for mapping named lists to function arguments, random strings, pasting and combining rows together across columns, etc.
Prediction intervals for ARIMA and structural time series models using importance sampling approach with uninformative priors for model parameters, leading to more accurate coverage probabilities in frequentist sense. Instead of sampling the future observations and hidden states of the state space representation of the model, only model parameters are sampled, and the method is based solving the equations corresponding to the conditional coverage probability of the prediction intervals. This makes method relatively fast compared to for example MCMC methods, and standard errors of prediction limits can also be computed straightforwardly.
Multinomial (inverse) regression inference for text documents and associated attributes. For details see: Taddy (2013 JASA) Multinomial Inverse Regression for Text Analysis <arXiv:1012.2098> and Taddy (2015, AoAS), Distributed Multinomial Regression, <arXiv:1311.6139>. A minimalist partial least squares routine is also included. Note that the topic modeling capability of earlier textir is now a separate package, maptpx'.
This package performs maximum likelihood based estimation and inference on time to event data, possibly subject to non-informative right censoring. FitParaSurv() provides maximum likelihood estimates of model parameters and distributional characteristics, including the mean, median, variance, and restricted mean. CompParaSurv() compares the mean, median, and restricted mean survival experiences of two treatment groups. Candidate distributions include the exponential, gamma, generalized gamma, log-normal, and Weibull.
This package provides a timeR class that makes timing codes easier. One can create timeR objects and use them to record all timings, and extract recordings as data frame for later use.
Accompanies the book Rainer Schlittgen and Cristina Sattarhoff (2020) <https://www.degruyter.com/view/title/575978> "Angewandte Zeitreihenanalyse mit R, 4. Auflage" . The package contains the time series and functions used therein. It was developed over many years teaching courses about time series analysis.
Deciphering hierarchy of agents exhibiting observable dominance events is a crucial problem in several disciplines, in particular in behavioural analysis of social animals, but also in social sciences and game theory. This package implements an inference approach based on graph theory, namely to extract the optimal acyclic subset of a weighted graph of dominance; this allows for hierarchy estimation through topological sorting. The package also contains infrastructure to investigate partially defined hierarchies and hierarchy dynamics.
Tsallis distribution also known as the q-exponential family distribution. Provide distribution d, p, q, r functions, fitting and testing functions. Project initiated by Paul Higbie and based on Cosma Shalizi's code.
The Cancer Genome Atlas (TCGA) is a program aimed at improving our understanding of Cancer Biology. Several TCGA Datasets are available online. TCGAretriever helps accessing and downloading TCGA data hosted on cBioPortal via its Web Interface (see <https://www.cbioportal.org/> for more information).
This interface was created to develop a standard procedure to analyse temporal trend in the framework of the OSPAR convention. The analysis process run through 4 successive steps : 1) manipulate your data, 2) select the parameters you want to analyse, 3) build your regulated time series, 4) perform diagnosis and analysis and 5) read the results. Statistical analysis call other package function such as Kendall tests or cusum() function.
The United Nations Sustainable Development Goals (SDGs) have become an important guideline for organisations to monitor and plan their contributions to social, economic, and environmental transformations. The text2sdg package is an open-source analysis package that identifies SDGs in text using scientifically developed query systems, opening up the opportunity to monitor any type of text-based data, such as scientific output or corporate publications. For more information see Meier, Mata & Wulff (2025) <doi:10.32614/RJ-2024-005> and Wulff, Meier & Mata (2024) <doi:10.1007/s11625-024-01516-3>.
This package provides access to the Taxonomic Name Resolution Service <https://github.com/ojalaquellueva/tnrsapi> through R. The user supplies plant taxonomic names and the package returns resolved taxonomic names along with information on decisions. Optionally, the package can also be used to parse taxonomic names.
Additive hazards models with two stage residual inclusion method are fitted under either survival data or competing risks data. The estimator incorporates an instrumental variable and therefore can recover causal estimand in the presence of unmeasured confounding under some assumptions. A.Ying, R. Xu and J. Murphy. (2019) <doi:10.1002/sim.8071>.