_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/

Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.

API method:

GET /api/packages?search=hello&page=1&limit=20

where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned in response headers.

If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.


r-blockcluster 4.5.5
Propagated dependencies: r-rtkore@1.6.13 r-rcpp@1.1.0
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://gitlab.inria.fr/iovleff/blockcluster
Licenses: GPL 3+
Synopsis: Co-Clustering Package for Binary, Categorical, Contingency and Continuous Data-Sets
Description:

Simultaneous clustering of rows and columns, usually designated by biclustering, co-clustering or block clustering, is an important technique in two way data analysis. It consists of estimating a mixture model which takes into account the block clustering problem on both the individual and variables sets. The blockcluster package provides a bridge between the C++ core library build on top of the STK++ library, and the R statistical computing environment. This package allows to co-cluster binary <doi:10.1016/j.csda.2007.09.007>, contingency <doi:10.1080/03610920903140197>, continuous <doi:10.1007/s11634-013-0161-3> and categorical data-sets <doi:10.1007/s11222-014-9472-2>. It also provides utility functions to visualize the results. This package may be useful for various applications in fields of Data mining, Information retrieval, Biology, computer vision and many more. More information about the project and comprehensive tutorial can be found on the link mentioned in URL.

r-bvartools 0.2.4
Propagated dependencies: r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-matrix@1.7-4 r-coda@0.19-4.1
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://github.com/franzmohr/bvartools
Licenses: GPL 2+
Synopsis: Bayesian Inference of Vector Autoregressive and Error Correction Models
Description:

Assists in the set-up of algorithms for Bayesian inference of vector autoregressive (VAR) and error correction (VEC) models. Functions for posterior simulation, forecasting, impulse response analysis and forecast error variance decomposition are largely based on the introductory texts of Chan, Koop, Poirier and Tobias (2019, ISBN: 9781108437493), Koop and Korobilis (2010) <doi:10.1561/0800000013> and Luetkepohl (2006, ISBN: 9783540262398).

r-binford 0.1.0
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: http://github.com/benmarwick/binford
Licenses: GPL 3
Synopsis: Binford's Hunter-Gatherer Data
Description:

Binford's hunter-gatherer data includes more than 200 variables coding aspects of hunter-gatherer subsistence, mobility, and social organization for 339 ethnographically documented groups of hunter-gatherers.

r-bspbss 1.0.6
Propagated dependencies: r-svd@0.5.8 r-rstiefel@1.0.1 r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-oro-nifti@0.11.4 r-neurobase@1.34.0 r-movmf@0.2-9 r-ica@1.0-3 r-gtools@3.9.5 r-gridextra@2.3 r-gplots@3.2.0 r-glmnet@4.1-10 r-ggplot2@4.0.1 r-bayesgpfit@1.1.0
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=BSPBSS
Licenses: GPL 3+
Synopsis: Bayesian Spatial Blind Source Separation
Description:

Gibbs sampling for Bayesian spatial blind source separation (BSP-BSS). BSP-BSS is designed for spatially dependent signals in high dimensional and large-scale data, such as neuroimaging. The method assumes the expectation of the observed images as a linear mixture of multiple sparse and piece-wise smooth latent source signals, and constructs a Bayesian nonparametric prior by thresholding Gaussian processes. Details can be found in our paper: Wu, B., Guo, Y., & Kang, J. (2024). Bayesian spatial blind source separation via the thresholded gaussian process. Journal of the American Statistical Association, 119(545), 422-433.

r-bpdir 0.1.2
Propagated dependencies: r-plotrix@3.8-13 r-mass@7.3-65 r-circular@0.5-2
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=bpDir
Licenses: GPL 2
Synopsis: Boxplots for Directional Data
Description:

This package provides functions for drawing boxplots for data on (the boundary of) a unit circle (i.e., circular and axial data), from Buttarazzi D., Pandolfo G., Porzio G.C. (2018) <doi:10.1111/biom.12889>.

r-birdnetr 0.3.2
Propagated dependencies: r-reticulate@1.44.1
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://birdnet-team.github.io/birdnetR/
Licenses: Expat
Synopsis: Deep Learning for Automated (Bird) Sound Identification
Description:

Use BirdNET', a state-of-the-art deep learning classifier, to automatically identify (bird) sounds. Analyze bioacoustic datasets without any computer science background using a pre-trained model or a custom trained classifier. Predict bird species occurrence based on location and week of the year. Kahl, S., Wood, C. M., Eibl, M., & Klinck, H. (2021) <doi:10.1016/j.ecoinf.2021.101236>.

r-bnrep 0.0.6
Propagated dependencies: r-shinythemes@1.2.0 r-shinyjs@2.1.0 r-shiny@1.11.1 r-rgraphviz@2.54.0 r-qgraph@1.9.8 r-dt@0.34.0 r-dplyr@1.1.4 r-bnlearn@5.1
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://github.com/manueleleonelli/bnRep
Licenses: Expat
Synopsis: Repository of Bayesian Networks from the Academic Literature
Description:

This package provides a collection of Bayesian networks (discrete, Gaussian, and conditional linear Gaussian) collated from recent academic literature. The bnRep_summary object provides an overview of the Bayesian networks in the repository and the package documentation includes details about the variables in each network. A Shiny app to explore the repository can be launched with bnRep_app() and is available online at <https://manueleleonelli.shinyapps.io/bnRep>. Reference: M. Leonelli (2025) <doi:10.1016/j.neucom.2025.129502>.

r-bayesgrowth 1.0.0
Propagated dependencies: r-tidybayes@3.0.7 r-tibble@3.3.0 r-stanheaders@2.32.10 r-rstantools@2.5.0 r-rstan@2.32.7 r-rcppparallel@5.1.11-1 r-rcppeigen@0.3.4.0.2 r-rcpp@1.1.0 r-loo@2.8.0 r-ggplot2@4.0.1 r-dplyr@1.1.4 r-bh@1.87.0-1 r-bayesplot@1.14.0 r-aquaticlifehistory@1.0.5
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://github.com/jonathansmart/BayesGrowth
Licenses: GPL 3
Synopsis: Estimate Fish Growth Using MCMC Analysis
Description:

Estimate fish length-at-age models using MCMC analysis with rstan models. This package allows a multimodel approach to growth fitting to be applied to length-at-age data and is supported by further analyses to determine model selection and result presentation. The core methods of this package are presented in Smart and Grammer (2021) "Modernising fish and shark growth curves with Bayesian length-at-age models". PLOS ONE 16(2): e0246734 <doi:10.1371/journal.pone.0246734>.

r-brsim 0.3
Propagated dependencies: r-rcmdrmisc@2.9-2 r-corrplot@0.95 r-cluster@2.1.8.1
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=brsim
Licenses: GPL 2+
Synopsis: Brainerd-Robinson Similarity Coefficient Matrix
Description:

This package provides the facility to calculate the Brainerd-Robinson similarity coefficient for the rows of an input table, and to calculate the significance of each coefficient based on a permutation approach; a heatmap is produced to visually represent the similarity matrix. Optionally, hierarchical agglomerative clustering can be performed and the silhouette method is used to identify an optimal number of clusters; the results of the clustering can be optionally used to sort the heatmap.

r-bmgarch 2.0.0
Propagated dependencies: r-stanheaders@2.32.10 r-rstantools@2.5.0 r-rstan@2.32.7 r-rdpack@2.6.4 r-rcppparallel@5.1.11-1 r-rcppeigen@0.3.4.0.2 r-rcpp@1.1.0 r-mass@7.3-65 r-loo@2.8.0 r-ggplot2@4.0.1 r-forecast@8.24.0 r-bh@1.87.0-1
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=bmgarch
Licenses: GPL 3+
Synopsis: Bayesian Multivariate GARCH Models
Description:

Fit Bayesian multivariate GARCH models using Stan for full Bayesian inference. Generate (weighted) forecasts for means, variances (volatility) and correlations. Currently DCC(P,Q), CCC(P,Q), pdBEKK(P,Q), and BEKK(P,Q) parameterizations are implemented, based either on a multivariate gaussian normal or student-t distribution. DCC and CCC models are based on Engle (2002) <doi:10.1198/073500102288618487> and Bollerslev (1990). The BEKK parameterization follows Engle and Kroner (1995) <doi:10.1017/S0266466600009063> while the pdBEKK as well as the estimation approach for this package is described in Rast et al. (2020) <doi:10.31234/osf.io/j57pk>. The fitted models contain rstan objects and can be examined with rstan functions.

r-cenbar 0.1.1
Propagated dependencies: r-survival@3.8-3 r-mvtnorm@1.3-3 r-mass@7.3-65 r-glmnet@4.1-10 r-foreach@1.5.2 r-cvtools@0.3.3
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=CenBAR
Licenses: GPL 2
Synopsis: Broken Adaptive Ridge AFT Model with Censored Data
Description:

Broken adaptive ridge estimator for censored data is used to select variables and estimate their coefficients in the semi-parametric accelerated failure time model for right-censored survival data.

r-csquares 0.1.0
Propagated dependencies: r-vctrs@0.6.5 r-tidyselect@1.2.1 r-tidyr@1.3.1 r-stringr@1.6.0 r-stars@0.6-8 r-sf@1.0-23 r-rlang@1.1.6 r-purrr@1.2.0 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://pepijn-devries.github.io/csquares/
Licenses: GPL 3+
Synopsis: Concise Spatial Query and Representation System (c-Squares)
Description:

Encode and decode c-squares, from and to simple feature (sf) or spatiotemporal arrays (stars) objects. Use c-squares codes to quickly join or query spatial data.

r-contaminatedmixt 1.3.8
Propagated dependencies: r-mvtnorm@1.3-3 r-mnormt@2.1.1 r-mixture@2.2.0 r-mclust@6.1.2 r-caret@7.0-1
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=ContaminatedMixt
Licenses: GPL 2
Synopsis: Clustering and Classification with the Contaminated Normal
Description:

Fits mixtures of multivariate contaminated normal distributions (with eigen-decomposed scale matrices) via the expectation conditional- maximization algorithm under a clustering or classification paradigm Methods are described in Antonio Punzo, Angelo Mazza, and Paul D McNicholas (2018) <doi:10.18637/jss.v085.i10>.

r-certara-nlme8 3.0.2
Propagated dependencies: r-xml2@1.5.0 r-reshape@0.8.10 r-data-table@1.17.8 r-batchtools@0.9.18
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=Certara.NLME8
Licenses: LGPL 3
Synopsis: Utilities for Certara's Nonlinear Mixed-Effects Modeling Engine
Description:

Perform Nonlinear Mixed-Effects (NLME) Modeling using Certara's NLME-Engine. Access the same Maximum Likelihood engines used in the Phoenix platform, including algorithms for parametric methods, individual, and pooled data analysis. The Quasi-Random Parametric Expectation-Maximization Method (QRPEM) is also supported <https://www.page-meeting.org/default.asp?abstract=2338>. Execution is supported both locally or on remote machines. Remote execution includes support for Linux Sun Grid Engine (SGE), Simple Linux Utility for Resource Management (SLURM) grids, Linux and Windows multicore, and individual runs.

r-cliftlrd 0.1-2
Propagated dependencies: r-liftlrd@1.0-9 r-cnltreg@0.1-2
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=CliftLRD
Licenses: GPL 2
Synopsis: Complex-Valued Wavelet Lifting Estimators of the Hurst Exponent for Irregularly Sampled Time Series
Description:

Implementation of Hurst exponent estimators based on complex-valued lifting wavelet energy from Knight, M. I and Nunes, M. A. (2018) <doi:10.1007/s11222-018-9820-8>.

r-cipostselect 0.2.2
Propagated dependencies: r-tictoc@1.2.1 r-mlbench@2.1-6 r-mass@7.3-65 r-magrittr@2.0.4 r-glmnet@4.1-10 r-ggplot2@4.0.1 r-foreach@1.5.2 r-doparallel@1.0.17
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://github.com/Diallo0/CIpostSelect
Licenses: Expat
Synopsis: Confidence Interval Post-Selection of Variable
Description:

Calculates confidence intervals after variable selection using repeated data splits. The package offers methods to address the challenges of post-selection inference, ensuring more accurate confidence intervals in models involving variable selection. The two main functions are lmps', which records the different models selected across multiple data splits as well as the corresponding coefficient estimates, and cips', which takes the lmps object as input to select variables and perform inferences using two types of voting.

r-crossclustering 4.1.2
Propagated dependencies: r-purrr@1.2.0 r-mclust@6.1.2 r-flip@2.5.1 r-dplyr@1.1.4 r-crayon@1.5.3 r-cluster@2.1.8.1 r-cli@3.6.5 r-checkmate@2.3.3
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://CRAN.R-project.org/package=CrossClustering
Licenses: GPL 3
Synopsis: Partial Clustering Algorithm
Description:

Provide the CrossClustering algorithm (Tellaroli et al. (2016) <doi:10.1371/journal.pone.0152333>), which is a partial clustering algorithm that combines the Ward's minimum variance and Complete Linkage algorithms, providing automatic estimation of a suitable number of clusters and identification of outlier elements.

r-consrankclass 1.0.2
Propagated dependencies: r-smacof@2.1-7 r-rlist@0.4.6.2 r-proxy@0.4-27 r-pracma@2.4.6 r-janitor@2.2.1 r-gtools@3.9.5 r-consrank@2.1.5
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://www.r-project.org/
Licenses: GPL 3
Synopsis: Classification and Clustering of Preference Rankings
Description:

Tree-based classification and soft-clustering method for preference rankings, with tools for external validation of fuzzy clustering, and Kemeny-equivalent augmented unfolding. It contains the recursive partitioning algorithm for preference rankings, non-parametric tree-based method for a matrix of preference rankings as a response variable. It contains also the distribution-free soft clustering method for preference rankings, namely the K-median cluster component analysis (CCA). The package depends on the ConsRank R package. Options for validate the tree-based method are both test-set procedure and V-fold cross validation. The package contains the routines to compute the adjusted concordance index (a fuzzy version of the adjusted rand index) and the normalized degree of concordance (the corresponding fuzzy version of the rand index). The package also contains routines to perform the Kemeny-equivalent augmented unfolding. The mds endine is the function sacofSym from the package smacof'. Essential references: D'Ambrosio, A., Vera, J.F., and Heiser, W.J. (2021) <doi:10.1080/00273171.2021.1899892>; D'Ambrosio, A., Amodio, S., Iorio, C., Pandolfo, G., and Siciliano, R. (2021) <doi:10.1007/s00357-020-09367-0>; D'Ambrosio, A., and Heiser, W.J. (2019) <doi:10.1007/s41237-018-0069-5>; D'Ambrosio, A., and Heiser W.J. (2016) <doi:10.1007/s11336-016-9505-1>; Hullermeier, E., Rifqi, M., Henzgen, S., and Senge, R. (2012) <doi:10.1109/TFUZZ.2011.2179303>; Marden, J.J. <ISBN:0412995212>.

r-configr 0.3.5
Propagated dependencies: r-yaml@2.3.10 r-stringr@1.6.0 r-rcpptoml@0.2.3 r-jsonlite@2.0.0 r-ini@0.3.1 r-glue@1.8.0
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://github.com/Miachol/configr
Licenses: Expat
Synopsis: An Implementation of Parsing and Writing Configuration File (JSON/INI/YAML/TOML)
Description:

This package implements the JSON, INI, YAML and TOML parser for R setting and writing of configuration file. The functionality of this package is similar to that of package config'.

r-copcar 2.0-4
Propagated dependencies: r-spam@2.11-1 r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-numderiv@2016.8-1.1 r-mcmcse@1.5-1
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=copCAR
Licenses: GPL 2+
Synopsis: Fitting the copCAR Regression Model for Discrete Areal Data
Description:

This package provides tools for fitting the copCAR (Hughes, 2015) <DOI:10.1080/10618600.2014.948178> regression model for discrete areal data. Three types of estimation are supported (continuous extension, composite marginal likelihood, and distributional transform), for three types of outcomes (Bernoulli, negative binomial, and Poisson).

r-clustblock 4.1.1
Propagated dependencies: r-factominer@2.12
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=ClustBlock
Licenses: Expat
Synopsis: Clustering of Datasets
Description:

Hierarchical and partitioning algorithms to cluster blocks of variables. The partitioning algorithm includes an option called noise cluster to set aside atypical blocks of variables. Different thresholds per cluster can be sets. The CLUSTATIS method (for quantitative blocks) (Llobell, Cariou, Vigneau, Labenne & Qannari (2020) <doi:10.1016/j.foodqual.2018.05.013>, Llobell, Vigneau & Qannari (2019) <doi:10.1016/j.foodqual.2019.02.017>) and the CLUSCATA method (for Check-All-That-Apply data) (Llobell, Cariou, Vigneau, Labenne & Qannari (2019) <doi:10.1016/j.foodqual.2018.09.006>, Llobell, Giacalone, Labenne & Qannari (2019) <doi:10.1016/j.foodqual.2019.05.017>) are the core of this package. The CATATIS methods allows to compute some indices and tests to control the quality of CATA data. Multivariate analysis and clustering of subjects for quantitative multiblock data, CATA, RATA, Free Sorting and JAR experiments are available. Clustering of rows in multi-block context (notably with ClusMB strategy) is also included.

r-cohortgenerator 1.0.1
Propagated dependencies: r-tibble@3.3.0 r-stringi@1.8.7 r-sqlrender@1.19.4 r-rlang@1.1.6 r-resultmodelmanager@0.6.2 r-readr@2.1.6 r-r6@2.6.1 r-parallellogger@3.5.1 r-lubridate@1.9.4 r-jsonlite@2.0.0 r-dplyr@1.1.4 r-digest@0.6.39 r-databaseconnector@7.0.0 r-checkmate@2.3.3
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://ohdsi.github.io/CohortGenerator/
Licenses: FSDG-compatible
Synopsis: Cohort Generation for the OMOP Common Data Model
Description:

Generate cohorts and subsets using an Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) Database. Cohorts are defined using CIRCE (<https://github.com/ohdsi/circe-be>) or SQL compatible with SqlRender (<https://github.com/OHDSI/SqlRender>).

r-cpam 0.1.3
Propagated dependencies: r-tximport@1.38.1 r-tidyr@1.3.1 r-stringr@1.6.0 r-shinyjs@2.1.0 r-shiny@1.11.1 r-scam@1.2-20 r-rlang@1.1.6 r-rcolorbrewer@1.1-3 r-purrr@1.2.0 r-pbmcapply@1.5.1 r-mvnfast@0.2.8 r-mgcv@1.9-4 r-matrixstats@1.5.0 r-magrittr@2.0.4 r-ggplot2@4.0.1 r-edger@4.8.0 r-dplyr@1.1.4 r-cli@3.6.5 r-bslib@0.9.0
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://l-a-yates.github.io/cpam/
Licenses: GPL 3+
Synopsis: Changepoint Additive Models for Time Series Omics Data
Description:

This package provides a comprehensive framework for time series omics analysis, integrating changepoint detection, smooth and shape-constrained trends, and uncertainty quantification. It supports gene- and transcript-level inferences, p-value aggregation for improved power, and both case-only and case-control designs. It includes an interactive shiny interface. The methods are described in Yates et al. (2024) <doi:10.1101/2024.12.22.630003>.

r-cocons 0.1.5
Propagated dependencies: r-spam@2.11-1 r-rcpp@1.1.0 r-optimparallel@1.0-2 r-knitr@1.50 r-fields@17.1 r-bh@1.87.0-1
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=cocons
Licenses: GPL 3+
Synopsis: Covariate-Based Covariance Functions for Nonstationary Spatial Modeling
Description:

Estimation, prediction, and simulation of nonstationary Gaussian process with modular covariate-based covariance functions. Sources of nonstationarity, such as spatial mean, variance, geometric anisotropy, smoothness, and nugget, can be considered based on spatial characteristics. An induced compact-supported nonstationary covariance function is provided, enabling fast and memory-efficient computations when handling densely sampled domains.

Page: 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884
Total results: 21208