Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Text categorization based on n-grams.
Implement the alternating algorithm for supervised tensor decomposition with interactive side information. Details can be found in the publication Hu, Jiaxin, Chanwoo Lee, and Miaoyan Wang. "Generalized Tensor Decomposition with features on multiple modes." Journal of Computational and Graphical Statistics, Vol. 31, No. 1, 204-218, 2022 <doi:10.1080/10618600.2021.1978471>.
This package implements the multiway sparse clustering approach of M. Wang and Y. Zeng, "Multiway clustering via tensor block models". Advances in Neural Information Processing System 32 (NeurIPS), 715-725, 2019.
The main purpose of this package is to propose a rigorous framework to fairly compare trip distribution laws and models as described in Lenormand et al. (2016) <doi:10.1016/j.jtrangeo.2015.12.008>.
This package provides a bootstrap test which decides whether two dose response curves can be assumed as equal concerning their maximum absolute deviation. A plenty of choices for the model types are available, which can be found in the DoseFinding package, which is used for the fitting of the models. See <doi:10.1080/01621459.2017.1281813> for details.
Calculates total survey error (TSE) for one or more surveys, using both scale-dependent and scale-independent metrics. Package works directly from the data set, with no hand calculations required: just upload a properly structured data set (see TESTIND and its documentation), properly input column names (see functions documentation), and run your functions. For more on TSE, see: Weisberg, Herbert (2005, ISBN:0-226-89128-3); Biemer, Paul (2010) <doi:10.1093/poq/nfq058>; Biemer, Paul et.al. (2017, ISBN:9781119041672); etc.
Tabu search algorithm for binary configurations. A basic version of the algorithm as described by Fouskakis and Draper (2007) <doi:10.1111/j.1751-5823.2002.tb00174.x>.
This package implements the Maximum Likelihood estimator for baseline, placebo, and treatment groups (three-group) experiments with non-compliance proposed by Gerber, Green, Kaplan, and Kern (2010).
Include the Twitter status widgets in HTML pages created using R markdown. The package uses the Twitter javascript APIs to embed in your document Twitter cards associated to specific statuses. The main targets are regular HTML pages or dashboards.
Imports non-tabular from Excel files into R. Exposes cell content, position and formatting in a tidy structure for further manipulation. Tokenizes Excel formulas. Supports .xlsx and .xlsm via the embedded RapidXML C++ library <https://rapidxml.sourceforge.net>. Does not support .xlsb or .xls'.
This is a simple addin to RStudio that finds all TODO', FIX ME', CHANGED etc. comments in your project and shows them as a markers list.
Prebuilt shiny modules containing tools for the generation of rmarkdown reports, supporting reproducible research and analysis.
Fast, reproducible detection and quantitative analysis of tertiary lymphoid structures (TLS) in multiplexed tissue imaging. Implements Independent Component Analysis Trace (ICAT) index, local Ripley's K scanning, automated K Nearest Neighbor (KNN)-based TLS detection, and T-cell clusters identification as described in Amiryousefi et al. (2025) <doi:10.1101/2025.09.21.677465>.
Manage time-series data frames across time zones, resolutions, and date ranges, while filling gaps using weekday/hour patterns or simple fill helpers or plotting them interactively. It is designed to work seamlessly with the tidyverse and dygraphs environments.
ARIMA-model-based decomposition of quarterly and monthly time series data. The methodology is developed and described, among others, in Burman (1980) <DOI:10.2307/2982132> and Hillmer and Tiao (1982) <DOI:10.2307/2287770>.
This package implements the TWO-Component Single Cell Model-Based Association Method (TWO-SIGMA) for gene-level differential expression (DE) analysis and DE-based gene set testing of single-cell RNA-sequencing datasets. See Van Buren et al. (2020) <doi:10.1002/gepi.22361> and Van Buren et al. (2021) <doi:10.1101/2021.01.24.427979>.
Facilitate the movement between data frames to xts'. Particularly useful when moving from tidyverse to the widely used xts package, which is the input format of choice to various other packages. It also allows the user to use a spread_by argument for a character column xts conversion.
This package provides functions for estimation of wood volumes, number of logs, diameters along the stem and heights at which certain diameters occur, based on taper functions and other parameters. References: McTague, J. P., & Weiskittel, A. (2021). <doi:10.1139/cjfr-2020-0326>.
The best ANN structure for time series data analysis is a demanding need in the present era. This package will find the best-fitted ANN model based on forecasting accuracy. The optimum size of the hidden layers was also determined after determining the number of lags to be included. This package has been developed using the algorithm of Paul and Garai (2021) <doi:10.1007/s00500-021-06087-4>.
This package provides functions for the computationally efficient simulation of dynamic networks estimated with the statistical framework of temporal exponential random graph models, implemented in the tergm package.
Simple tabulation should be dead simple. This package is an opinionated approach to easy tabulations while also providing exact numbers and allowing for re-usability. This is achieved by providing tabulations as data.frames with columns for values, optional variable names, frequency counts including and excluding NAs and percentages for counts including and excluding NAs. Also values are automatically sorted by in decreasing order of frequency counts to allow for fast skimming of the most important information.
R implementation of TFactS to predict which are the transcription factors (TFs), regulated in a biological condition based on lists of differentially expressed genes (DEGs) obtained from transcriptome experiments. This package is based on the TFactS concept by Essaghir et al. (2010) <doi:10.1093/nar/gkq149> and expands it. It allows users to perform TFactS'-like enrichment approach. The package can import and use the original catalogue file from the TFactS as well as users defined catalogues of interest that are not supported by TFactS (e.g., Arabidopsis).
Write output (plots and tables) ensuring traceability back to code. Includes a graphics saver with simple automation of stamping with source, destination and creation time. A list of plots can be saved at once. A user-friendly selection of output dimensions for presentations, on-screen inspections, and more available.
This package provides a general regression neural network (GRNN) is a variant of a Radial Basis Function Network characterized by a fast single-pass learning. tsfgrnn allows you to forecast time series using a GRNN model Francisco Martinez et al. (2019) <doi:10.1007/978-3-030-20521-8_17> and Francisco Martinez et al. (2022) <doi:10.1016/j.neucom.2021.12.028>. When the forecasting horizon is higher than 1, two multi-step ahead forecasting strategies can be used. The model built is autoregressive, that is, it is only based on the observations of the time series. You can consult and plot how the prediction was done. It is also possible to assess the forecasting accuracy of the model using rolling origin evaluation.