Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The tcplfit2 R package performs basic concentration-response curve fitting. The original tcplFit() function in the tcpl R package performed basic concentration-response curvefitting to 3 models. With tcplfit2, the core tcpl concentration-response functionality has been expanded to process diverse high-throughput screen (HTS) data generated at the US Environmental Protection Agency, including targeted ToxCast, high-throughput transcriptomics (HTTr) and high-throughput phenotypic profiling (HTPP). tcplfit2 can be used independently to support analysis for diverse chemical screening efforts.
This package implements a three-step procedure in the spirit of Leffondre et al. (2004) to identify clusters of individual longitudinal trajectories. The procedure involves (1) computing a number of "measures of change" capturing various features of the trajectories; (2) using a Principal Component Analysis based dimension reduction algorithm to select a subset of measures and (3) using the k-medoids or k-means algorithm to identify clusters of trajectories.
Wrapper for using tapkee command line utility, it allows to run it from inside R and catch the results for further analysis and plotting. Tapkee is a program for fast dimension reduction, see package?tapkee and <http://tapkee.lisitsyn.me/> for installation and other details.
It provides generic methods that are used by more than one package, avoiding conflicts. This package will be imported by tidySingleCellExperiment and tidyseurat'.
This package implements the truncated harmonic mean estimator (THAMES) of the reciprocal marginal likelihood using posterior samples and unnormalized log posterior values via reciprocal importance sampling. Metodiev, Perrot-Dockès, Ouadah, Irons, Latouche, & Raftery (2024). Bayesian Analysis. <doi:10.1214/24-BA1422>.
The ToxCast Data Analysis Pipeline ('tcpl') is an R package that manages, curve-fits, plots, and stores ToxCast data to populate its linked MySQL database, invitrodb'. The package was developed for the chemical screening data curated by the US EPA's Toxicity Forecaster (ToxCast) program, but tcpl can be used to support diverse chemical screening efforts.
To provide a high dimensional grouped variable selection approach for detection of whole-genome SNP effects and SNP-SNP interactions, as described in Fang et al. (2017, under review).
Computation and visualization of Taxicab Correspondence Analysis, Choulakian (2006) <doi:10.1007/s11336-004-1231-4>. Classical correspondence analysis (CA) is a statistical method to analyse 2-dimensional tables of positive numbers and is typically applied to contingency tables (Benzecri, J.-P. (1973). L'Analyse des Donnees. Volume II. L'Analyse des Correspondances. Paris, France: Dunod). Classical CA is based on the Euclidean distance. Taxicab CA is like classical CA but is based on the Taxicab or Manhattan distance. For some tables, Taxicab CA gives more informative results than classical CA.
The main function of the package aims to update lmer()'/'glmer() models depending on their warnings, so trying to avoid convergence and singularity problems.
Tests one hypothesis with several test statistics, correcting for multiple testing. The central function in the package is testtwice(). In a sensitivity analysis, the method has the largest design sensitivity of its component tests. The package implements the method and examples in Rosenbaum, P. R. (2012) <doi:10.1093/biomet/ass032> Testing one hypothesis twice in observational studies. Biometrika, 99(4), 763-774.
This package provides tools for decomposing differences in rate metrics between two groups into contributions from individual subgroups and visualizing them as a "Theseus Plot". Inspired by the story of the Ship of Theseus, the method replaces subgroup data from one group with that of another step by step, recalculating the overall metric at each stage to quantify subgroup contributions. A Theseus Plot combines the stepwise progression of a waterfall plot with the comparative bars of a bar chart, offering an intuitive way to understand subgroup-level effects.
This package provides methods for handling the missing values outliers are introduced in this package. The recognized missing values and outliers are replaced using a model-based approach. The model may consist of both autoregressive components and external regressors. The methods work robust and efficient, and they are fully tunable. The primary motivation for writing the package was preprocessing of the energy systems data, e.g. power plant production time series, but the package could be used with any time series data. For details, see Narajewski et al. (2021) <doi:10.1016/j.softx.2021.100809>.
The strength of evidence provided by epidemiological and observational studies is inherently limited by the potential for unmeasured confounding. We focus on three key quantities: the observed bound of the confidence interval closest to the null, the relationship between an unmeasured confounder and the outcome, for example a plausible residual effect size for an unmeasured continuous or binary confounder, and the relationship between an unmeasured confounder and the exposure, for example a realistic mean difference or prevalence difference for this hypothetical confounder between exposure groups. Building on the methods put forth by Cornfield et al. (1959), Bross (1966), Schlesselman (1978), Rosenbaum & Rubin (1983), Lin et al. (1998), Lash et al. (2009), Rosenbaum (1986), Cinelli & Hazlett (2020), VanderWeele & Ding (2017), and Ding & VanderWeele (2016), we can use these quantities to assess how an unmeasured confounder may tip our result to insignificance.
We present a range of simulations to aid researchers in determining appropriate sample sizes when performing critical thermal limits studies (e.g. CTmin/CTmin experiments). A number of wrapper functions are provided for plotting and summarising outputs from these simulations. This package is presented in van Steenderen, C.J.M., Sutton, G.F., Owen, C.A., Martin, G.D., and Coetzee, J.A. Sample size assessments for thermal physiology studies: An R package and R Shiny application. 2023. Physiological Entomology. <doi:10.1111/phen.12416>. The GUI version of this package is available on the R Shiny online server at: <https://clarkevansteenderen.shinyapps.io/ThermalSampleR_Shiny/> , or it is accessible via GitHub at <https://github.com/clarkevansteenderen/ThermalSampleR_Shiny/>. We would like to thank Grant Duffy (University of Otago, Dundedin, New Zealand) for granting us permission to use the source code for the Test of Total Equivalency function.
Collect marketing data from TikTok Ads using the Windsor.ai API <https://windsor.ai/api-fields/>.
This package provides a timeR class that makes timing codes easier. One can create timeR objects and use them to record all timings, and extract recordings as data frame for later use.
Pre-process for discrete time series data set which is not continuous at the column of date'. Refilling records of missing date and other columns to the hollow data set so that final data set is able to be dealt with time series analysis.
Fit species distribution models (SDMs) using the tidymodels framework, which provides a standardised interface to define models and process their outputs. tidysdm expands tidymodels by providing methods for spatial objects, models and metrics specific to SDMs, as well as a number of specialised functions to process occurrences for contemporary and palaeo datasets. The full functionalities of the package are described in Leonardi et al. (2024) <doi:10.1111/2041-210X.14406>.
This package provides a collection of true type and open type Star Trek-themed fonts.
This package provides a toolkit for calculating topographic distances and identifying and plotting topographic paths. Topographic distances can be calculated along shortest topographic paths (Wang (2009) <doi:10.1111/j.1365-294X.2009.04338.x>), weighted topographic paths (Zhan et al. (1993) <doi:10.1007/3-540-57207-4_29>), and topographic least cost paths (Wang and Summers (2010) <doi:10.1111/j.1365-294X.2009.04465.x>). Functions can map topographic paths on colored or hill shade maps and plot topographic cross sections (elevation profiles) for the paths.
Extends invariant causal prediction (Peters et al., 2016, <doi:10.1111/rssb.12167>) to generalized linear and transformation models (Hothorn et al., 2018, <doi:10.1111/sjos.12291>). The methodology is described in Kook et al. (2023, <doi:10.1080/01621459.2024.2395588>).
Census and administrative data in South Korea are a basic source of quantitative and mixed-methods research for social and urban scientists. This package provides a sf (Pebesma et al., 2024 <doi:10.32614/CRAN.package.sf>) based standardized workflow based on direct open API access to the major census and administrative data sources and pre-generated files in South Korea.
Add tests in-line in examples. Provides standalone functions for facilitating easier test writing in Rd files. However, a more familiar interface is provided using roxygen2 tags. Tools are also provided for facilitating package configuration and use with testthat'.
This package provides a collection of functions for visualizing,exploring and annotating genetic association results.Association results from multiple traits can be viewed simultaneously along with gene annotation, over the entire genome (Manhattan plot) or in the more detailed regional view.