Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Compose data for and extract, manipulate, and visualize posterior draws from Bayesian models ('JAGS', Stan', rstanarm', brms', MCMCglmm', coda', ...) in a tidy data format. Functions are provided to help extract tidy data frames of draws from Bayesian models and that generate point summaries and intervals in a tidy format. In addition, ggplot2 geoms and stats are provided for common visualization primitives like points with multiple uncertainty intervals, eye plots (intervals plus densities), and fit curves with multiple, arbitrary uncertainty bands.
Estimators for semi-parametric linear regression models with truncated response variables (fixed truncation point). The estimators implemented are the Symmetrically Trimmed Least Squares (STLS) estimator introduced by Powell (1986) <doi:10.2307/1914308>, the Quadratic Mode (QME) estimator introduced by Lee (1993) <doi:10.1016/0304-4076(93)90056-B>, and the Left Truncated (LT) estimator introduced by Karlsson (2006) <doi:10.1007/s00184-005-0023-x>.
Mixed models for repeated measures (MMRM) are a popular choice for analyzing longitudinal continuous outcomes in randomized clinical trials and beyond; see for example Cnaan, Laird and Slasor (1997) <doi:10.1002/(SICI)1097-0258(19971030)16:20%3C2349::AID-SIM667%3E3.0.CO;2-E>. This package provides an interface for fitting MMRM within the tern <https://cran.r-project.org/package=tern> framework by Zhu et al. (2023) and tabulate results easily using rtables <https://cran.r-project.org/package=rtables> by Becker et al. (2023). It builds on mmrm <https://cran.r-project.org/package=mmrm> by Sabanés Bové et al. (2023) for the actual MMRM computations.
Pure R implementation of Apache Thrift. This library doesn't require any code generation. To learn more about Thrift go to <https://thrift.apache.org>.
This package provides functions implementing minimal distance estimation methods for parametric tail dependence models, as proposed in Einmahl, J.H.J., Kiriliouk, A., Krajina, A., and Segers, J. (2016) <doi:10.1111/rssb.12114> and Einmahl, J.H.J., Kiriliouk, A., and Segers, J. (2018) <doi:10.1007/s10687-017-0303-7>.
This package provides functions for implementing the targeted gold standard (GS) testing. You provide the true disease or treatment failure status and the risk score, tell TGST the availability of GS tests and which method to use, and it returns the optimal tripartite rules. Please refer to Liu et al. (2013) <doi:10.1080/01621459.2013.810149> for more details.
Disaggregates low frequency time series data to higher frequency series. Implements the following methods for temporal disaggregation: Boot, Feibes and Lisman (1967) <DOI:10.2307/2985238>, Chow and Lin (1971) <DOI:10.2307/1928739>, Fernandez (1981) <DOI:10.2307/1924371> and Litterman (1983) <DOI:10.2307/1391858>.
Constraint-based causal discovery using the PC algorithm while accounting for a partial node ordering, for example a partial temporal ordering when the data were collected in different waves of a cohort study. Andrews RM, Foraita R, Didelez V, Witte J (2021) <arXiv:2108.13395> provide a guide how to use tpc to analyse cohort data.
An open-access tool/framework that constitutes the core functions to analyze terrestrial water cycle data across various spatio-temporal scales.
This package provides an integrated user interface and workflow for the analysis of running, cycling and swimming data from GPS-enabled tracking devices through the trackeR <https://CRAN.R-project.org/package=trackeR> R package.
This package performs Three-Mode Principal Components Analysis, which carries out Tucker Models.
Propensity score matching for non-binary treatments.
An RStudio add-in to visualize time series. Time series are searched in the global environment as data.frame objects with a column of type date and a column of type numeric. Interactive charts are produced using plotly package.
First - Generates (potentially high-dimensional) high-frequency and low-frequency series for simulation studies in temporal disaggregation; Second - a toolkit utilizing temporal disaggregation and benchmarking techniques with a low-dimensional matrix of indicator series previously proposed in Dagum and Cholette (2006, ISBN:978-0-387-35439-2) ; and Third - novel techniques proposed by Mosley, Gibberd and Eckley (2021) <arXiv:2108.05783> for disaggregating low-frequency series in the presence of high-dimensional indicator matrices.
An implementation that combines trait data and a phylogenetic tree (or trees) into a single object of class treedata.table'. The resulting object can be easily manipulated to simultaneously change the trait- and tree-level sampling. Currently implemented functions allow users to use a data.table syntax when performing operations on the trait dataset within the treedata.table object. For more details see Roman-Palacios et al. (2021) <doi:10.7717/peerj.12450>.
Generate LaTeX tables directly from R. It builds LaTeX tables in blocks in the spirit of ggplot2 using the + and / operators for concatenation in the vertical and horizontal dimensions, respectively. It exports tables in the LaTeX tabular environment using .tex code. It can compile .tex code to PDF automatically.
This package provides functionality of a statistical testing implementation whether a dataset comes from a symmetric distribution when the center of symmetry is unknown, including Wilcoxon test and sign test procedure. In addition, sample size determination for both tests is provided. The Wilcoxon test procedure is described in Vexler et al. (2023) <https://www.sciencedirect.com/science/article/abs/pii/S0167947323000579>, and the sign test is outlined in Gastwirth (1971) <https://www.jstor.org/stable/2284233>.
Translation of logit models coefficients into percentages, following Deauvieau (2010) <doi:10.1177/0759106309352586>.
Tidy tools for NetCDF data sources. Explore the contents of a NetCDF source (file or URL) presented as variables organized by grid with a database-like interface. The hyper_filter() interactive function translates the filter value or index expressions to array-slicing form. No data is read until explicitly requested, as a data frame or list of arrays via hyper_tibble() or hyper_array().
The R language includes a set of defined types, but the language itself is "absurdly dynamic" (Turcotte & Vitek (2019) <doi:10.1145/3340670.3342426>), and lacks any way to specify which types are expected by any expression. The typetracer package enables code to be traced to extract detailed information on the properties of parameters passed to R functions. typetracer can trace individual functions or entire packages.
An integrated set of extensions to the ergm package to analyze and simulate network evolution based on exponential-family random graph models (ERGM). tergm is a part of the statnet suite of packages for network analysis. See Krivitsky and Handcock (2014) <doi:10.1111/rssb.12014> and Carnegie, Krivitsky, Hunter, and Goodreau (2015) <doi:10.1080/10618600.2014.903087>.
Computes the solution path of the Terminating-LARS (T-LARS) algorithm. The T-LARS algorithm is a major building block of the T-Rex selector (see R package TRexSelector'). The package is based on the papers Machkour, Muma, and Palomar (2022) <arXiv:2110.06048>, Efron, Hastie, Johnstone, and Tibshirani (2004) <doi:10.1214/009053604000000067>, and Tibshirani (1996) <doi:10.1111/j.2517-6161.1996.tb02080.x>.
This package provides drop-in replacements for common R functions (mean(), sum(), sd(), min(), etc.) that default to na.rm = TRUE and issue warnings when missing values are removed. It handles some special cases. The table() default is set to useNA = ifany'.
Estimation of time-dependent ROC curve and area under time dependent ROC curve (AUC) in the presence of censored data, with or without competing risks. Confidence intervals of AUCs and tests for comparing AUCs of two rival markers measured on the same subjects can be computed, using the iid-representation of the AUC estimator. Plot functions for time-dependent ROC curves and AUC curves are provided. Time-dependent Positive Predictive Values (PPV) and Negative Predictive Values (NPV) can also be computed. See Blanche et al. (2013) <doi:10.1002/sim.5958> and references therein for the details of the methods implemented in the package.