Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package produces weighted cross-tabulation tables for one or more outcome variables across one or more breakdown variables, and exports them directly to Excel'. For each outcome-by-breakdown combination, the package creates a weighted percentage table and a corresponding unweighted count table, with transparent handling of missing values and light, readable formatting. Designed to support social survey analysis workflows that require large sets of consistent, publication-ready tables.
The twelvedata REST service offers access to current and historical data on stocks, standard as well as digital crypto currencies, and other financial assets covering a wide variety of course and time spans. See <https://twelvedata.com/> for details, to create an account, and to request an API key for free-but-capped access to the data.
Documentation for commonly-used objects included in the base distribution of R. Note that tldrDocs does not export any functions itself, its purpose is to write .Rd files during its installation for tldr() to find.
Likelihood-based methods for model fitting and assessment, prediction and intervention analysis of count time series following generalized linear models are provided. Models with the identity and with the logarithmic link function are allowed. The conditional distribution can be Poisson or Negative Binomial.
Create additional rows and columns on broom::tidy() output to allow for easier control on categorical parameter estimates.
Characterisation of the extremal dependence structure of time series, avoiding pre-processing and filtering as done typically with peaks-over-threshold methods. It uses the conditional approach of Heffernan and Tawn (2004) <DOI:10.1111/j.1467-9868.2004.02050.x> which is very flexible in terms of extremal and asymptotic dependence structures, and Bayesian methods improve efficiency and allow for deriving measures of uncertainty. For example, the extremal index, related to the size of clusters in time, can be estimated and samples from its posterior distribution obtained.
Doubly-robust, non-parametric estimators for the transported average treatment effect from Rudolph, Williams, Stuart, and Diaz (2023) <doi:10.48550/arXiv.2304.00117> and the intent-to-treatment average treatment effect from Rudolph and van der Laan (2017) <doi:10.1111/rssb.12213>. Estimators are fit using cross-fitting and nuisance parameters are estimated using the Super Learner algorithm.
Programs for Martinussen and Scheike (2006), `Dynamic Regression Models for Survival Data', Springer Verlag. Plus more recent developments. Additive survival model, semiparametric proportional odds model, fast cumulative residuals, excess risk models and more. Flexible competing risks regression including GOF-tests. Two-stage frailty modelling. PLS for the additive risk model. Lasso in the ahaz package.
Longitudinal data offers insights into population changes over time but often requires a flexible structure, especially with varying follow-up intervals. Panel data is one way to store such records, though it adds complexity to analysis. The tvtools package for R simplifies exploring and analyzing panel data.
Estimation of transition probabilities for the illness-death model and or the three-state progressive model.
Token-Oriented Object Notation (TOON) is a compact, human-readable serialization format designed for passing structured data to Large Language Models with significantly reduced token usage. It's intended for LLM input as a lossless, drop-in representation of JSON data.
Key-value store, implemented as a wrapper around LMDB'; the "lightning memory-mapped database" <https://www.symas.com/mdb>. LMDB is a transactional key value store that uses a memory map for efficient access. This package wraps the entire LMDB interface (except duplicated keys), and provides objects for transactions and cursors.
This package implements target trial emulation methods to apply randomized clinical trial design and analysis in an observational setting. Using marginal structural models, it can estimate intention-to-treat and per-protocol effects in emulated trials using electronic health records. A description and application of the method can be found in Danaei et al (2013) <doi:10.1177/0962280211403603>.
This package provides a comprehensive resource for data on Taylor Swift songs. Data is included for all officially released studio albums, extended plays (EPs), and individual singles are included. Data comes from Genius (lyrics) and SoundStat (song characteristics). Additional functions are included for easily creating data visualizations with color palettes inspired by Taylor Swift's album covers.
This package implements a task queue system for asynchronous parallel computing using PostgreSQL <https://www.postgresql.org/> as a backend. Designed for embarrassingly parallel problems where tasks do not communicate with each other. Dynamically distributes tasks to workers, handles uneven load balancing, and allows new workers to join at any time. Particularly useful for running large numbers of independent tasks on high-performance computing (HPC) clusters with SLURM <https://slurm.schedmd.com/> job schedulers.
This package provides a comprehensive toolset for any useR conducting topological data analysis, specifically via the calculation of persistent homology in a Vietoris-Rips complex. The tools this package currently provides can be conveniently split into three main sections: (1) calculating persistent homology; (2) conducting statistical inference on persistent homology calculations; (3) visualizing persistent homology and statistical inference. The published form of TDAstats can be found in Wadhwa et al. (2018) <doi:10.21105/joss.00860>. For a general background on computing persistent homology for topological data analysis, see Otter et al. (2017) <doi:10.1140/epjds/s13688-017-0109-5>. To learn more about how the permutation test is used for nonparametric statistical inference in topological data analysis, read Robinson & Turner (2017) <doi:10.1007/s41468-017-0008-7>. To learn more about how TDAstats calculates persistent homology, you can visit the GitHub repository for Ripser, the software that works behind the scenes at <https://github.com/Ripser/ripser>. This package has been published as Wadhwa et al. (2018) <doi:10.21105/joss.00860>.
Assists in the TOPSIS analysis process, designed to return at the end of the answer of the TOPSIS multicriteria analysis, a ranking table with the best option as the analysis proposes. TOPSIS is basically a technique developed by Hwang and Yoon in 1981, starting from the point that the best alternative should be closest to the positive ideal solution and farthest from the negative one, based on several criteria to result in the best benefit. (LIU, H. et al., 2019) <doi:10.1016/j.agwat.2019.105787>.
This package provides functions for estimation of wood volumes, number of logs, diameters along the stem and heights at which certain diameters occur, based on taper functions and other parameters. References: McTague, J. P., & Weiskittel, A. (2021). <doi:10.1139/cjfr-2020-0326>.
Finding the best values for user-specified arguments of a prediction algorithm can be difficult, particularly if there is an interaction between argument levels. This package automates the testing of any user-defined prediction algorithm over an arbitrary number of arguments. It includes functions for testing the algorithm over the given arguments with respect to an arbitrary number of user-defined diagnostics, visualising the results of these tests, and finding the optimal argument combinations with respect to each diagnostic.
Adds some functions to help in your coding etiquette. tinycodet primarily focuses on 4 aspects. 1) Safer decimal (in)equality testing, standard-evaluated alternatives to with() and aes(), and other functions for safer coding. 2) A new package import system, that attempts to combine the benefits of using a package without attaching it, with the benefits of attaching a package. 3) Extending the string manipulation capabilities of the stringi R package. 4) Reducing repetitive code. Besides linking to Rcpp', tinycodet has only one other dependency, namely stringi'.
This package provides a set of fast tidy functions for wrangling, completing and summarising date and date-time data. It combines tidyverse syntax with the efficiency of data.table and speed of collapse'.
Time Series Segmented Residual Trends is a method for the automated detection of land degradation from remotely sensed vegetation and climate datasets. TSS-RESTREND incorporates aspects of two existing degradation detection methods: RESTREND which is used to control for climate variability, and BFAST which is used to look for structural changes in the ecosystem. The full details of the testing and justification of the TSS-RESTREND method (version 0.1.02) are published in Burrell et al., (2017). <doi:10.1016/j.rse.2017.05.018>. The changes to the method introduced in version 0.2.03 focus on the inclusion of temperature as an additional climate variable. This allows for land degradation assessment in temperature limited drylands. A paper that details this work is currently under review. There are also a number of bug fixes and speed improvements. Version 0.3.0 introduces additional attribution for eCO2, climate change and climate variability the details of which are in press in Burrell et al., (2020). The version under active development and additional example scripts showing how the package can be applied can be found at <https://github.com/ArdenB/TSSRESTREND>.
Fits temperature response models to rate measurements taken at different temperatures. Etienne Low-Decarie,Tobias G. Boatman, Noah Bennett,Will Passfield,Antonio Gavalas-Olea,Philipp Siegel, Richard J. Geider (2017) <doi:10.1002/ece3.3576> .
There are some experimental scenarios where each experimental unit receives a sequence of treatments across multiple periods, and treatment effects persist beyond the period of application. It focuses on the construction and calculation of the parametric value of the residual effect designs balanced for carryover effects, also referred to as crossover designs, change-over designs, or repeated measurements designs (Aggarwal and Jha, 2010<doi:10.1080/15598608.2010.10412013>). The primary objective of the package is to generate a new class of Balanced Ternary Residual Effect Designs (BTREDs), balanced for carryover effects tailored explicitly for situations where the number of periods is less than or equal to the number of treatments. In addition, the package provides four new classes of Partially Balanced Ternary Residual Effect Designs (PBTREDs), constructed using incomplete block designs, initial sequences, and rectangular association scheme. In addition, one extra function is included to help study the parametric properties of a given residual effect design.