Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Uses a calibrated model fusion approach to optimally combine multiple surrogate markers. Specifically, two initial estimates of optimal composite scores of the markers are obtained; the optimal calibrated combination of the two estimated scores is then constructed which ensures both validity of the final combined score and optimality with respect to the proportion of treatment effect explained (PTE) by the final combined score. The primary function, pte.estimate.multiple(), estimates the PTE of the identified combination of multiple surrogate markers. Details are described in Wang et al (2022) <doi:10.1111/biom.13677>. A tutorial for the package is available at <https://www.laylaparast.com/cmfsurrogate> and a Shiny App is available at <https://parastlab.shinyapps.io/CMFsurrogateApp/>.
This package provides a simple package to grab cheat sheets and save them to your local computer.
This package provides a collection of functions to calculate Composite Indicators methods, focusing, in particular, on the normalisation and weighting-aggregation steps, as described in OECD Handbook on constructing composite indicators: methodology and user guide, 2008, Vidoli and Fusco and Mazziotta <doi:10.1007/s11205-014-0710-y>, Mazziotta and Pareto (2016) <doi:10.1007/s11205-015-0998-2>, Van Puyenbroeck and Rogge <doi:10.1016/j.ejor.2016.07.038> and other authors.
The implemented functions allow the query, download, and import of remotely-stored and version-controlled data items. The inherent meta-database maps data files and import code to programming classes and allows access to these items via files deposited in public repositories. The purpose of the project is to increase reproducibility and establish version tracking of results from (paleo)environmental/ecological research.
The Crunch.io service <https://crunch.io/> provides a cloud-based data store and analytic engine, as well as an intuitive web interface. Using this package, analysts can interact with and manipulate Crunch datasets from within R. Importantly, this allows technical researchers to collaborate naturally with team members, managers, and clients who prefer a point-and-click interface.
The cov.nnve() function implements robust covariance estimation by the nearest neighbor variance estimation (NNVE) method of Wang and Raftery (2002) <DOI:10.1198/016214502388618780>.
The CalMaTe method calibrates preprocessed allele-specific copy number estimates (ASCNs) from DNA microarrays by controlling for single-nucleotide polymorphism-specific allelic crosstalk. The resulting ASCNs are on average more accurate, which increases the power of segmentation methods for detecting changes between copy number states in tumor studies including copy neutral loss of heterozygosity. CalMaTe applies to any ASCNs regardless of preprocessing method and microarray technology, e.g. Affymetrix and Illumina.
This package provides a tool for causal meta-analysis. This package implements the aggregation formulas and inference methods proposed in Berenfeld et al. (2025) <doi:10.48550/arXiv.2505.20168>. Users can input aggregated data across multiple studies and compute causally meaningful aggregated effects of their choice (risk difference, risk ratio, odds ratio, etc) under user-specified population weighting. The built-in function camea() allows to obtain precise variance estimates for these effects and to compare the latter to a classical meta-analysis aggregate, the random effect model, as implemented in the metafor package <https://CRAN.R-project.org/package=metafor>.
Cox model inference for relative hazard and covariate-specific pure risk estimated from stratified and unstratified case-cohort data as described in Etievant, L., Gail, M.H. (Lifetime Data Analysis, 2024) <doi:10.1007/s10985-024-09621-2>.
This package provides functions to assess complex heterogeneity in the strength of a surrogate marker with respect to multiple baseline covariates, in either a randomized treatment setting or observational setting. For a randomized treatment setting, the functions assess and test for heterogeneity using both a parametric model and a semiparametric two-step model. More details for the randomized setting are available in: Knowlton, R., Tian, L., & Parast, L. (2025). "A General Framework to Assess Complex Heterogeneity in the Strength of a Surrogate Marker," Statistics in Medicine, 44(5), e70001 <doi:10.1002/sim.70001>. For an observational setting, functions in this package assess complex heterogeneity in the strength of a surrogate marker using meta-learners, with options for different base learners. More details for the observational setting will be available in the future in: Knowlton, R., Parast, L. (2025) "Assessing Surrogate Heterogeneity in Real World Data Using Meta-Learners." A tutorial for this package can be found at <https://www.laylaparast.com/cohetsurr>.
This package provides recent kernel density estimation methods for circular data, including adaptive and higher-order techniques. The implementation is based on recent advances in bandwidth selection and circular smoothing. Key methods include adaptive bandwidth selection methods by ZámeÄ nà k et al. (2024) <doi:10.1007/s00180-023-01401-0>, complete cross-validation by Hasilová et al. (2024) <doi:10.59170/stattrans-2024-024>, Fourier-based plug-in rules by Tenreiro (2022) <doi:10.1080/10485252.2022.2057974>, and higher-order kernels by Tsuruta & Sagae (2017) <doi:10.1016/j.spl.2017.08.003>.
This package contains 3 maps. 1) US States 2) US Counties 3) Countries of the world.
Accelerate Bayesian analytics workflows in R through interactive modelling, visualization, and inference. Define probabilistic graphical models using directed acyclic graphs (DAGs) as a unifying language for business stakeholders, statisticians, and programmers. This package relies on interfacing with the numpyro python package.
Calculate various cardiovascular disease risk scores from the Framingham Heart Study (FHS), the American College of Cardiology (ACC), and the American Heart Association (AHA) as described in Dâ agostino, et al (2008) <doi:10.1161/circulationaha.107.699579>, Goff, et al (2013) <doi:10.1161/01.cir.0000437741.48606.98>, and Mclelland, et al (2015) <doi:10.1016/j.jacc.2015.08.035>, and Khan, et al (2024) <doi:10.1161/CIRCULATIONAHA.123.067626>.
Developing general equilibrium models, computing general equilibrium and simulating economic dynamics with structural dynamic models in LI (2019, ISBN: 9787521804225) "General Equilibrium and Structural Dynamics: Perspectives of New Structural Economics. Beijing: Economic Science Press". When developing complex general equilibrium models, GE package should be used in addition to this package.
Record and generate a gif of your R sessions plots. When creating a visualization, there is inevitably iteration and refinement that occurs. Automatically save the plots made to a specified directory, previewing them as they would be saved. Then combine all plots generated into a gif to show the plot refinement over time.
Canonical correlation analysis and maximum correlation via projection pursuit, as well as fast implementations of correlation estimators, with a focus on robust and nonparametric methods.
This package contains functions for the construction of carryover balanced crossover designs. In addition contains functions to check given designs for balance.
Routines for solving convex optimization problems with cone constraints by means of interior-point methods. The implemented algorithms are partially ported from CVXOPT, a Python module for convex optimization (see <https://cvxopt.org> for more information).
Retrieve cancer screening data for cervical, breast and colorectal cancers from the Kenya Health Information System <https://hiskenya.org> in a consistent way.
This package creates a new chars class which looks like a string but is actually a vector of individual characters, making strings iterable. This class enables vector operations on strings such as reverse, sort, head, and set operations.
This package provides tools for Delphi's COVIDcast Epidata API: data access, maps and time series plotting, and basic signal processing. The API includes a collection of numerous indicators relevant to the COVID-19 pandemic in the United States, including official reports, de-identified aggregated medical claims data, large-scale surveys of symptoms and public behavior, and mobility data, typically updated daily and at the county level. All data sources are documented at <https://cmu-delphi.github.io/delphi-epidata/api/covidcast.html>.
Find the location of the code for an R package based on the package's name or string representation. Checks on CRAN based on information in the URL field or BioConductor and GitHub based on constructing a URL, and verifies all paths via testing for a successful response. This can be useful when automating static code analysis based on a list of package names, and similar tasks.
This package provides functions for evaluating and visualizing predictive model performance (specifically: binary classifiers) in the field of customer scoring. These metrics include lift, lift index, gain percentage, top-decile lift, F1-score, expected misclassification cost and absolute misclassification cost. See Berry & Linoff (2004, ISBN:0-471-47064-3), Witten and Frank (2005, 0-12-088407-0) and Blattberg, Kim & Neslin (2008, ISBN:978â 0â 387â 72578â 9) for details. Visualization functions are included for lift charts and gain percentage charts. All metrics that require class predictions offer the possibility to dynamically determine cutoff values for transforming real-valued probability predictions into class predictions.