Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Estimate and return the needed parameters for visualisations designed for OpenBudgets <http://openbudgets.eu/> data. Calculate cluster analysis measures in Budget data of municipalities across Europe, according to the OpenBudgets data model. It involves a set of techniques and algorithms used to find and divide the data into groups of similar observations. Also, can be used generally to extract visualisation parameters convert them to JSON format and use them as input in a different graphical interface.
This package provides a collection of helper functions and htmlwidgets to help publishers curate content collections on Posit Connect'. The components, Card, Grid, Table, Search, and Filter can be used to produce a showcase page or gallery contained within a static or interactive R Markdown page.
This package implements a joint cointegration testing approach that combines Engle-Granger, Johansen maximum eigenvalue, Boswijk, and Banerjee tests into a unified test-statistic for the null of non-cointegration. Also see Bayer and Hanck (2013) <doi:10.1111/j.1467-9892.2012.00814.x>.
Computes classification accuracy and consistency indices under Item Response Theory. Implements the total score IRT-based methods in Lee, Hanson & Brennen (2002) and Lee (2010), the IRT-based methods in Rudner (2001, 2005), and the total score nonparametric methods in Lathrop & Cheng (2014). For dichotomous and polytomous tests.
Cristin to Zotero ('c2z') aims at obtaining total dominion over Cristin ('Current Research Information SysTem in Norway') and Zotero'. The package enables manipulating Zotero libraries using R'. Import references from Cristin', Regjeringen', CRAN', ISBN ('Alma', LoC'), and DOI ('CrossRef', DataCite') to a Zotero library. Add, edit, copy, or delete items, including attachments and collections, and export references to BibLaTeX (and other formats).
Predict the course of clinical trial with a time-to-event endpoint for both two-arm and single-arm design. Each of the four primary study design parameters (the expected number of observed events, the number of subjects enrolled, the observation time, and the censoring parameter) can be derived analytically given the other three parameters. And the simulation datasets can be generated based on the design settings.
This package provides an extension to the purrr family of mapping functions to apply a function to each combination of elements in a list of inputs. Also includes functions for automatically detecting output type in mapping functions, finding every combination of elements of lists or rows of data frames, and applying multiple models to multiple subsets of a dataset.
This package provides various tools of for clustering multivariate angular data on the torus. The package provides angular adaptations of usual clustering methods such as the k-means clustering, pairwise angular distances, which can be used as an input for distance-based clustering algorithms, and implements clustering based on the conformal prediction framework. Options for the conformal scores include scores based on a kernel density estimate, multivariate von Mises mixtures, and naive k-means clusters. Moreover, the package provides some basic data handling tools for angular data.
This package implements Cramer-von Mises Statistics for testing fit to (1) fully specified discrete distributions as described in Choulakian, Lockhart and Stephens (1994) <doi:10.2307/3315828> (2) discrete distributions with unknown parameters that must be estimated from the sample data, see Spinelli & Stephens (1997) <doi:10.2307/3315735> and Lockhart, Spinelli and Stephens (2007) <doi:10.1002/cjs.5550350111> (3) grouped continuous distributions with Unknown Parameters, see Spinelli (2001) <doi:10.2307/3316040>. Maximum likelihood estimation (MLE) is used to estimate the parameters. The package computes the Cramer-von Mises Statistics, Anderson-Darling Statistics and the Watson-Stephens Statistics and their p-values.
Compute covariate-adjusted specificity at controlled sensitivity level, or covariate-adjusted sensitivity at controlled specificity level, or covariate-adjust receiver operating characteristic curve, or covariate-adjusted thresholds at controlled sensitivity/specificity level. All statistics could also be computed for specific sub-populations given their covariate values. Methods are described in Ziyi Li, Yijian Huang, Datta Patil, Martin G. Sanda (2021+) "Covariate adjustment in continuous biomarker assessment".
Generates the calibration simplex (a generalization of the reliability diagram) for three-category probability forecasts, as proposed by Wilks (2013) <doi:10.1175/WAF-D-13-00027.1>.
Calculates the credit debt for the next period based on the available data using the cross-classification credibility model.
This package implements the board game CamelUp for use in introductory statistics classes using a Shiny app.
An interface for creating, registering, and resolving content-based identifiers for data management. Content-based identifiers rely on the cryptographic hashes to refer to the files they identify, thus, anyone possessing the file can compute the identifier using a well-known standard algorithm, such as SHA256'. By registering a URL at which the content is accessible to a public archive (such as Hash Archive) or depositing data in a scientific repository such Zenodo', DataONE or SoftwareHeritage', the content identifier can serve many functions typically associated with A Digital Object Identifier ('DOI'). Unlike location-based identifiers like DOIs', content-based identifiers permit the same content to be registered in many locations.
The Certifiably Optimal RulE ListS (Corels) learner by Angelino et al described in <doi:10.48550/arXiv.1704.01701> provides interpretable decision rules with an optimality guarantee, and is made available to R with this package. See the file AUTHORS for a list of copyright holders and contributors.
An interactive document on the topic of cluster analysis using rmarkdown and shiny packages. Runtime examples are provided in the package function as well as at <https://analyticmodels.shinyapps.io/ClusterAnalysis/>.
This package contains the probability density function, cumulative distribution function, quantile function, and random number generator for composite and discrete composite distributions with Pareto tails. The detailed description of the methods and the applications of the methods can be found in Bowen Liu, Malwane M.A. Ananda (2023) <arXiv:2309.16443>.
Utility functions that allow checking the basic validity of a function argument or any other value, including generating an error and assigning a default in a single line of code. The main purpose of the package is to provide simple and easily readable argument checking to improve code robustness.
Computes solutions for linear and logistic regression models with potentially high-dimensional categorical predictors. This is done by applying a nonconvex penalty (SCOPE) and computing solutions in an efficient path-wise fashion. The scaling of the solution paths is selected automatically. Includes functionality for selecting tuning parameter lambda by k-fold cross-validation and early termination based on information criteria. Solutions are computed by cyclical block-coordinate descent, iterating an innovative dynamic programming algorithm to compute exact solutions for each block.
Loads and displays images, selectively masks specified background colors, bins pixels by color using either data-dependent or automatically generated color bins, quantitatively measures color similarity among images using one of several distance metrics for comparing pixel color clusters, and clusters images by object color similarity. Uses CIELAB, RGB, or HSV color spaces. Originally written for use with organism coloration (reef fish color diversity, butterfly mimicry, etc), but easily applicable for any image set.
Offers a diverse collection of datasets focused on cardiovascular and heart disease research, including heart failure, myocardial infarction, aortic dissection, transplant outcomes, cardiovascular risk factors, drug efficacy, and mortality trends. Designed for researchers, clinicians, epidemiologists, and data scientists, the package features clinical, epidemiological, and simulated datasets covering a wide range of conditions and treatments such as statins, anticoagulants, and beta blockers. It supports analyses related to disease progression, treatment effects, rehospitalization, and public health outcomes across various cardiovascular patient populations.
Surrounds the usual sample variance of a univariate numeric sample with a confidence interval for the population variance. This has been done so far only under the assumption that the underlying distribution is normal. Under the hood, this package implements the unique least-variance unbiased estimator of the variance of the sample variance, in a formula that is equivalent to estimating kurtosis and square of the population variance in an unbiased way and combining them according to the classical formula into an estimator of the variance of the sample variance. Both the sample variance and the estimator of its variance are U-statistics. By the theory of U-statistic, the resulting estimator is unique. See Fuchs, Krautenbacher (2016) <doi:10.1080/15598608.2016.1158675> and the references therein for an overview of unbiased estimation of variances of U-statistics.
Construct directed graphs of S4 class hierarchies and visualize them. In general, these graphs typically are DAGs (directed acyclic graphs), often simple trees in practice.
This package provides a collection of synthetic datasets simulating sales transactions from a fictional company. The dataset includes various related tables that contain essential business and operational data, useful for analyzing sales performance and other business insights. Key tables included in the package are: - "sales": Contains data on individual sales transactions, including order details, pricing, quantities, and customer information. - "customer": Stores customer-specific details such as demographics, geographic location, occupation, and birthday. - "store": Provides information about stores, including location, size, status, and operational dates. - "orders": Contains details about customer orders, including order and delivery dates, store, and customer data. - "product": Contains data on products, including attributes such as product name, category, price, cost, and weight. - "date": A time-based table that includes date-related attributes like year, month, quarter, day, and working day indicators. This dataset is ideal for practicing data analysis, performing time-series analysis, creating reports, or simulating business intelligence scenarios.