Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides methods for extracting various features from time series data. The features provided are those from Hyndman, Wang and Laptev (2013) <doi:10.1109/ICDMW.2015.104>, Kang, Hyndman and Smith-Miles (2017) <doi:10.1016/j.ijforecast.2016.09.004> and from Fulcher, Little and Jones (2013) <doi:10.1098/rsif.2013.0048>. Features include spectral entropy, autocorrelations, measures of the strength of seasonality and trend, and so on. Users can also define their own feature functions.
Features include the ability to extract tabled content from NISO-JATS-coded XML, any native HTML or HML file, DOCX, and PDF documents, and then collapse it into a text format that is readable by humans by mimicking the actions of a screen reader. As tables within PDF documents are extracted with the tabulapdf package, and the table captions and footnotes cannot be extracted, the results on tables within PDF documents have to be considered less precise. The function table2matrix() returns a list of the tables within a document as character matrices. table2text() collapses the matrix content into a list of character strings by imitating the behavior of a screen reader. The textual representation of characters and numbers can be unified with unifyMatrix() before parsing. The function table2stats() extracts the tabled statistical test results from the collapsed text with the function standardStats() from the JATSdecoder package and, if activated, checks the reported and coded p-values for consistency. Due to the great variability and potential complexity of table structures, parsing accuracy may vary.
In order to easily integrate geoRSS data into analysis, tidygeoRSS parses geo feeds and returns tidy simple features data frames.
Link R with Transformers from Hugging Face to transform text variables to word embeddings; where the word embeddings are used to statistically test the mean difference between set of texts, compute semantic similarity scores between texts, predict numerical variables, and visual statistically significant words according to various dimensions etc. For more information see <https://www.r-text.org>.
Computes how the correlation between 2 time-series changes over time. To do so, the package follows the method from Choi & Shin (2021) <doi:10.1007/s42952-020-00073-6>. It performs a non-parametric kernel smoothing (using a common bandwidth) of all underlying components required for the computation of a correlation coefficient (i.e., x, y, x^2, y^2, xy). An automatic selection procedure for the bandwidth parameter is implemented. Alternative kernels can be used (Epanechnikov, box and normal). Both Pearson and Spearman correlation coefficients can be estimated and change in correlation over time can be tested.
BEAST2 (<https://www.beast2.org>) is a widely used Bayesian phylogenetic tool, that uses DNA/RNA/protein data and many model priors to create a posterior of jointly estimated phylogenies and parameters. Tracer (<https://github.com/beast-dev/tracer/>) is a GUI tool to parse and analyze the files generated by BEAST2'. This package provides a way to parse and analyze BEAST2 input files without active user input, but using R function calls instead.
This package provides conditional maximum likelihood (CML) item parameter estimation of both sequential and cumulative deterministic multistage designs (Zwitser & Maris, 2015, <doi:10.1007/s11336-013-9369-6>) and probabilistic sequential and cumulative multistage designs (Steinfeld & Robitzsch, 2024, <doi:10.1007/s41237-024-00228-3>). Supports CML item parameter estimation of conventional linear designs and additional functions for the likelihood ratio test (Andersen, 1973, <doi:10.1007/BF02291180>) as well as functions for simulating various types of multistage designs.
The Gene Expression Omnibus (<https://www.ncbi.nlm.nih.gov/geo/>) and The Cancer Genome Atlas (<https://portal.gdc.cancer.gov/>) are widely used medical public databases. Our platform integrates routine analysis and visualization tools for expression data to provide concise and intuitive data analysis and presentation.
Get statistics and reports from YouTube. To learn more about the YouTube Analytics and Reporting API, see <https://developers.google.com/youtube/reporting/>.
This package contains logic for single sample gene set testing of cancer transcriptomic data with adjustment for normal tissue-specificity. Frost, H. Robert (2023) "Tissue-adjusted pathway analysis of cancer (TPAC)" <doi:10.1101/2022.03.17.484779>.
R implementation of the software tools developed in the H-CUP (Healthcare Cost and Utilization Project) <https://hcup-us.ahrq.gov> and AHRQ (Agency for Healthcare Research and Quality) <https://www.ahrq.gov>. It currently contains functions for mapping ICD-9 codes to the AHRQ comorbidity measures and translating ICD-9 (resp. ICD-10) codes to ICD-10 (resp. ICD-9) codes based on GEM (General Equivalence Mappings) from CMS (Centers for Medicare and Medicaid Services).
Routines for the analysis of nonlinear time series. This work is largely inspired by the TISEAN project, by Rainer Hegger, Holger Kantz and Thomas Schreiber: <http://www.mpipks-dresden.mpg.de/~tisean/>.
Matrix factorization for multivariate time series with both low rank and temporal structures. The procedure is the one proposed by Alquier, P. and Marie, N. "Matrix factorization for multivariate time series analysis." Electronic Journal of Statistics, 13(2), 4346-4366 (2019).
Find out who maintains the packages you use in your current session or in your package library and maybe say thank you'.
Information on all of the TriMet stops in the Portland Metro Area. It includes information such as the longitude, latitude, cross street, and direction of the stop. TriMet has catalogued these stops, 6880 in total.
Our method introduces mathematically well-defined measures for tightness of branches in a hierarchical tree. Statistical significance of the findings is determined, for all branches of the tree, by performing permutation tests, optionally with generalized Pareto p-value estimation.
The Taylor Russell model is a widely used method for assessing test validity in personnel selection tasks. The three functions in this package extend this model in a number of notable ways. TR() estimates test validity for a single selection test via the original Taylor Russell model. It extends this model by allowing users greater flexibility in argument choice. For example, users can specify any three of the four parameters (base rate, selection ratio, criterion validity, and positive predictive value) of the Taylor Russell model and estimate the remaining parameter (see the help file for examples). The TaylorRussell() function generalizes the original Taylor Russell model to allow for multiple selection tests (predictors). To our knowledge, this is the first generalization of the Taylor Russell model to allow for three or more selection tests (it is also the first to correctly handle models with two selection tests). TRDemo() is a shiny program for illustrating the underlying logic of the Taylor Russell model. Taylor, HC and Russell, JT (1939) "The relationship of validity coefficients to the practical effectiveness of tests in selection: Discussion and tables" <doi:10.1037/h0057079>.
This package provides a set of functions to estimate rank and factor loadings of time series tensor factor models. A tensor is a multidimensional array. To analyze high-dimensional tensor time series, factor model is a major dimension reduction tool. TensorPreAve provides functions to estimate the rank of core tensors and factor loading spaces of tensor time series. More specifically, a pre-averaging method that accumulates information from tensor fibres is used to estimate the factor loading spaces. The estimated directions corresponding to the strongest factors are then used for projecting the data for a potentially improved re-estimation of the factor loading spaces themselves. A new rank estimation method is also implemented to utilizes correlation information from the projected data. See Chen and Lam (2023) <arXiv:2208.04012> for more details.
This package provides a diverse collection of time series datasets spanning various fields such as economics, finance, energy, healthcare, and more. Designed to support time series analysis in R by offering datasets from multiple disciplines, making it a valuable resource for researchers and analysts.
The modern database TileDB introduces a powerful on-disk format for storing and accessing any complex data based on multi-dimensional arrays. It supports dense and sparse arrays, dataframes and key-values stores, cloud storage ('S3', GCS', Azure'), chunked arrays, multiple compression, encryption and checksum filters, uses a fully multi-threaded implementation, supports parallel I/O, data versioning ('time travel'), metadata and groups. It is implemented as an embeddable cross-platform C++ library with APIs from several languages, and integrations. This package provides the R support.
This package implements methods for selecting the number of factors in Poisson factor models, with a primary focus on Thinning Cross-Validation (TCV). The TCV method is based on the data thinning technique, which probabilistically partitions each count observation into training and test sets while preserving the underlying factor structure. The Poisson factor model is then fit on the training set, and model selection is performed by comparing predictive performance on the test set. This toolkit is designed for researchers working with high-dimensional count data in fields such as genomics, text mining, and social sciences. The data thinning methodology is detailed in Dharamshi et al. (2025) <doi:10.1080/01621459.2024.2353948> and Wang et al. (2025) <doi:10.1080/01621459.2025.2546577>.
Access Google Trends information. This package provides a tidy wrapper to the gtrendsR package. Use four spaces when indenting paragraphs within the Description.
Computation of effects under linear, logistic and Poisson regression models with transformed variables. Logarithm and power transformations are allowed. Effects can be displayed both numerically and graphically in both the original and the transformed space of the variables. The methods are described in Barrera-Gomez and Basagana (2015) <doi:10.1097/EDE.0000000000000247>.
This package provides a set of functions to implement Time Series Cointegrated System (TSCS) spatial interpolation and relevant data visualization.