Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a simple interface to search available data provided by Theia (<https://theia.cnes.fr>), download it, and manage it. Data can be downloaded based on a search result or from a cart file downloaded from Theia website.
Data collected on movement behavior is often in the form of time- stamped latitude/longitude coordinates sampled from the underlying movement behavior. These data can be compressed into a set of segments via the Top- Down Time Ratio Segmentation method described in Meratnia and de By (2004) <doi:10.1007/978-3-540-24741-8_44> which, with some loss of information, can both reduce the size of the data as well as provide corrective smoothing mechanisms to help reduce the impact of measurement error. This is an improvement on the well-known Douglas-Peucker algorithm for segmentation that operates not on the basis of perpendicular distances. Top-Down Time Ratio segmentation allows for disparate sampling time intervals by calculating the distance between locations and segments with respect to time. Provided a trajectory with timestamps, tdtr() returns a set of straight- line segments that can represent the full trajectory. McCool, Lugtig, and Schouten (2022) <doi:10.1007/s11116-022-10328-2> describe this method as implemented here in more detail.
This package provides a set of functions that allow users for styling their R code according to the tidyverse style guide. The package uses a native Rust implementation to ensure the highest performance. Learn more about tergo at <https://rtergo.pagacz.io>.
Access and manipulate spatial tracking data, with straightforward coercion from and to other formats. Filter for speed and create time spent maps from tracking data. There are coercion methods to convert between trip and ltraj from adehabitatLT', and between trip and psp and ppp from spatstat'. Trip objects can be created from raw or grouped data frames, and from types in the sp', sf', amt', trackeR', mousetrap', and other packages, Sumner, MD (2011) <https://figshare.utas.edu.au/articles/thesis/The_tag_location_problem/23209538>.
This package provides functions for managing cashflows and interest rate curves.
Transforms long data into a matrix form to allow for ease of input into modelling packages for regression, principal components, imputation or machine learning. It does this by pivoting on user defined columns, generating a key-value table for variable names to ensure one-to-one mappings are preserved. It is particularly useful when the indicator names in the columns are long descriptive strings, for example "Energy imports, net (% of energy use)". High level analysis wrapper functions for correlation and principal components analysis are provided.
This package provides datasets in a format that can be easily consumed by torch dataloaders'. Handles data downloading from multiple sources, caching and pre-processing so users can focus only on their model implementations.
Leveraging (large) language models for automatic topic labeling. The main function converts a list of top terms into a label for each topic. Hence, it is complementary to any topic modeling package that produces a list of top terms for each topic. While human judgement is indispensable for topic validation (i.e., inspecting top terms and most representative documents), automatic topic labeling can be a valuable tool for researchers in various scenarios.
Compositional data consisting of three-parts can be color mapped with a ternary color scale. Such a scale is provided by the tricolore packages with options for discrete and continuous colors, mean-centering and scaling. See Jonas Schöley (2021) "The centered ternary balance scheme. A technique to visualize surfaces of unbalanced three-part compositions" <doi:10.4054/DemRes.2021.44.19>, Jonas Schöley, Frans Willekens (2017) "Visualizing compositional data on the Lexis surface" <doi:10.4054/DemRes.2017.36.21>, and Ilya Kashnitsky, Jonas Schöley (2018) "Regional population structures at a glance" <doi:10.1016/S0140-6736(18)31194-2>.
Temporal SNA tools for continuous- and discrete-time longitudinal networks having vertex, edge, and attribute dynamics stored in the networkDynamic format. This work was supported by grant R01HD68395 from the National Institute of Health.
This package provides new layer functions to tmap for drawing glyphs. A glyph is a small chart (e.g., donut chart) shown at specific map locations to visualize multivariate or time-series data. The functions work with the syntax of tmap and allow flexible control over size, layout, and appearance.
Defines a graphics device and functions for graphical output in terminal emulators that support graphical output. Currently terminals that support the Terminal Graphics Protocol (<https://sw.kovidgoyal.net/kitty/graphics-protocol/>) and terminal supporting Sixel (<https://en.wikipedia.org/wiki/Sixel>) are supported.
Changepoint detection algorithms for R are widespread but have different interfaces and reporting conventions. This makes the comparative analysis of results difficult. We solve this problem by providing a tidy, unified interface for several different changepoint detection algorithms. We also provide consistent numerical and graphical reporting leveraging the broom and ggplot2 packages.
Facilities to work with vector and raster data in efficient repeatable and systematic work flow. Missing functionality in existing packages is included here to allow extraction from raster data with simple features and Spatial types and to make extraction consistent and straightforward. Extract cell numbers from raster data and return the cells as a data frame rather than as lists of matrices or vectors. The functions here allow spatial data to be used without special handling for the format currently in use.
This package provides a minimal-dependency, performance-first R package for reading, writing, validating, streaming, and converting TOON (Token-Oriented Object Notation) data. Optimized for very large tabular files with robust diagnostics. Supports lossless JSON conversion and tabular CSV/Parquet/Feather conversion.
This package provides tools for computing various vector summaries of persistence diagrams studied in Topological Data Analysis. For improved computational efficiency, all code for the vector summaries is written in C++ using the Rcpp and RcppArmadillo packages.
This package provides a two-stage regression method that can be used when various input data types are correlated, for example gene expression and methylation in drug response prediction. In the first stage it uses the upstream features (such as methylation) to predict the response variable (such as drug response), and in the second stage it uses the downstream features (such as gene expression) to predict the residuals of the first stage. In our manuscript (Aben et al., 2016, <doi:10.1093/bioinformatics/btw449>), we show that using TANDEM prevents the model from being dominated by gene expression and that the features selected by TANDEM are more interpretable.
Comprehensive functions to calculate sample size and power for clinical trials with two co-primary endpoints. The package supports five endpoint combinations: two continuous endpoints (Sozu et al. 2011 <doi:10.1080/10543406.2011.551329>), two binary endpoints using asymptotic methods (Sozu et al. 2010 <doi:10.1002/sim.3972>) and exact methods (Homma and Yoshida 2025 <doi:10.1177/09622802251368697>), mixed continuous and binary endpoints (Sozu et al. 2012 <doi:10.1002/bimj.201100221>), and mixed count and continuous endpoints (Homma and Yoshida 2024 <doi:10.1002/pst.2337>). All methods appropriately account for correlation between endpoints and provide both sample size and power calculation capabilities.
Trauma Mortality prediction for ICD-9, ICD-10, and AIS lexicons in long or wide format based on Dr. Alan Cook's tmpm mortality model.
Providing new german-wide TapeR Models and functions for their evaluation. Included are the most common tree species in Germany (Norway spruce, Scots pine, European larch, Douglas fir, Silver fir as well as European beech, Common/Sessile oak and Red oak). Many other species are mapped to them so that 36 tree species / groups can be processed. Single trees are defined by species code, one or multiple diameters in arbitrary measuring height and tree height. The functions then provide information on diameters along the stem, bark thickness, height of diameters, volume of the total or parts of the trunk and total and component above-ground biomass. It is also possible to calculate assortments from the taper curves. Uncertainty information is provided for diameter, volume and component biomass estimation.
Two- and three-dimensional morphometric maps of enamel and dentine thickness and multivariate analysis. Volume calculation of dental materials. Principal component analysis of thickness maps with associated morphometric map variations.
Tests one hypothesis with several test statistics, correcting for multiple testing. The central function in the package is testtwice(). In a sensitivity analysis, the method has the largest design sensitivity of its component tests. The package implements the method and examples in Rosenbaum, P. R. (2012) <doi:10.1093/biomet/ass032> Testing one hypothesis twice in observational studies. Biometrika, 99(4), 763-774.
This package implements triple-difference (DDD) estimators for both average treatment effects and event-study parameters. Methods include regression adjustment, inverse-probability weighting, and doubly-robust estimators, all of which rely on a conditional DDD parallel-trends assumption and allow covariate adjustment across multiple pre- and post-treatment periods. The methodology is detailed in Ortiz-Villavicencio and Sant'Anna (2025) <doi:10.48550/arXiv.2505.09942>.
Helper functions for processing REDCap data in R. REDCap is a web-enabled application for building and managing surveys and databases developed at Vanderbilt University.