Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a slightly-opinionated R interface for the Tremendous API (<https://www.tremendous.com/>). In addition to supporting GET and POST requests, tremendousr has, dare I say, tremendously intuitive functions for sending digital rewards and incentives directly from R.
This package implements methods and functions to calibrate time-specific niche models (multi-temporal calibration), letting users execute a strict calibration and selection process of niche models based on ellipsoids, as well as functions to project the potential distribution in the present and in global change scenarios.The tenm package has functions to recover information that may be lost or overlooked while applying a data curation protocol. This curation involves preserving occurrences that may appear spatially redundant (occurring in the same pixel) but originate from different time periods. A novel aspect of this package is that it might reconstruct the fundamental niche more accurately than mono-calibrated approaches. The theoretical background of the package can be found in Peterson et al. (2011)<doi:10.5860/CHOICE.49-6266>.
Tensor Composition Analysis (TCA) allows the deconvolution of two-dimensional data (features by observations) coming from a mixture of heterogeneous sources into a three-dimensional matrix of signals (features by observations by sources). The TCA framework further allows to test the features in the data for different statistical relations with an outcome of interest while modeling source-specific effects; particularly, it allows to look for statistical relations between source-specific signals and an outcome. For example, TCA can deconvolve bulk tissue-level DNA methylation data (methylation sites by individuals) into a three-dimensional tensor of cell-type-specific methylation levels for each individual (i.e. methylation sites by individuals by cell types) and it allows to detect cell-type-specific statistical relations (associations) with phenotypes. For more details see Rahmani et al. (2019) <DOI:10.1038/s41467-019-11052-9>.
An easy tool for plotting annotated timelines, grouped timelines, and exploratory graphics (boxplot/histogram/density plot/scatter plot/line plot). Filter, summarize date data by duration and convert to calendar units.
This package provides a minimal-dependency, performance-first R package for reading, writing, validating, streaming, and converting TOON (Token-Oriented Object Notation) data. Optimized for very large tabular files with robust diagnostics. Supports lossless JSON conversion and tabular CSV/Parquet/Feather conversion.
Create highly customized tables with this simple and dependency-free package. Data frames can be converted to HTML', LaTeX', Markdown', Word', PNG', PDF', or Typst tables. The user interface is minimalist and easy to learn. The syntax is concise. HTML tables can be customized using the flexible Bootstrap framework, and LaTeX code with the tabularray package.
This package provides a latent, quasi-independent truncation time is assumed to be linked with the observed dependent truncation time, the event time, and an unknown transformation parameter via a structural transformation model. The transformation parameter is chosen to minimize the conditional Kendall's tau (Martin and Betensky, 2005) <doi:10.1198/016214504000001538> or the regression coefficient estimates (Jones and Crowley, 1992) <doi:10.2307/2336782>. The marginal distribution for the truncation time and the event time are completely left unspecified. The methodology is applied to survival curve estimation and regression analysis.
This package provides a bootstrap test which decides whether two dose response curves can be assumed as equal concerning their maximum absolute deviation. A plenty of choices for the model types are available, which can be found in the DoseFinding package, which is used for the fitting of the models. See <doi:10.1080/01621459.2017.1281813> for details.
Identification and estimation of the autoregressive threshold models with Gaussian noise, as well as positive-valued time series. The package provides the identification of the number of regimes, the thresholds and the autoregressive orders, as well as the estimation of remain parameters. The package implements the methodology from the 2005 paper: Modeling Bivariate Threshold Autoregressive Processes in the Presence of Missing Data <DOI:10.1081/STA-200054435>.
Cluster analysis is one of the most fundamental problems in data science. We provide a variety of algorithms from clustering to the learning on the space of partitions. See Hennig, Meila, and Rocci (2016, ISBN:9781466551886) for general exposition to cluster analysis.
This package provides tools for specifying time series regression models.
Class definitions and constructors for pseudo-vectors containing all permutations, combinations and subsets of objects taken from a vector. Simplifies working with structures commonly encountered in combinatorics.
Calculates the robust Taba linear, Taba rank (monotonic), TabWil, and TabWil rank correlations. Test statistics as well as one sided or two sided p-values are provided for all correlations. Multiple correlations and p-values can be calculated simultaneously across multiple variables. In addition, users will have the option to use the partial, semipartial, and generalized partial correlations; where the partial and semipartial correlations use linear, logistic, or Poisson regression to modify the specified variable.
Simulate phase II and/or phase III clinical trials. It supports various types of endpoints and adaptive strategies. Tools for carrying out graphical testing procedure and combination test under group sequential design are also provided.
Helper functions for MASCOTNUM / RT-UQ <https://uq.math.cnrs.fr/> algorithm template, for design of numerical experiments practice: algorithm template parser to support MASCOTNUM specification <https://github.com/MASCOTNUM/algorithms>, ask & tell decoupling injection (inspired by <https://search.r-project.org/CRAN/refmans/sensitivity/html/decoupling.html>) to use "crimped" algorithms (like uniroot(), optim(), ...) from outside R, basic template examples: Brent algorithm for 1 dim root finding and L-BFGS-B from base optim().
Implementation of the transformation of the Mean Opinion Scores (MOS) to be used before applying the rank based statistical techniques. The method and its necessity is described in: Babak Naderi, Sebastian Möller (2020) <arXiv:2004.11490>.
Compute arbitrary non-parametric bootstrap statistics on data in tidy data frames.
Processing and analysis of pathomics, omics and other medical datasets. tRigon serves as a toolbox for descriptive and statistical analysis, correlations, plotting and many other methods for exploratory analysis of high-dimensional datasets.
To visualize the gene structure with multiple isoforms better, I developed this package to draw different transcript structures easily.
Create interactive tables, calendars, charts and markdown WYSIWYG editor with TOAST UI <https://ui.toast.com/> libraries to integrate in shiny applications or rmarkdown HTML documents.
Download TIGER/Line shapefiles from the United States Census Bureau (<https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html>) and load into R as sf objects.
Produce an HTML page containing horizontal strips that symbolize events in a person's lsife. Since this is entirely a visualization, the image <https://barryzee.github.io/henry-timeline/henry.html> will show the basic use to show a timeline of events. The image <https://barryzee.github.io/vermeer/cssOverlay.html> shows how to correlate two timelines of events. A brief description is available at <https://barryzee.github.io/timeLineGraphics_manuscript/golden_age.html>.
Routines for nonlinear time series analysis based on Threshold Autoregressive Moving Average (TARMA) models. It provides functions and methods for: TARMA model fitting and forecasting, including robust estimators, see Goracci et al. JBES (2025) <doi:10.1080/07350015.2024.2412011>; tests for threshold effects, see Giannerini et al. JoE (2024) <doi:10.1016/j.jeconom.2023.01.004>, Goracci et al. Statistica Sinica (2023) <doi:10.5705/ss.202021.0120>, Angelini et al. (2024) <doi:10.48550/arXiv.2308.00444>; unit-root tests based on TARMA models, see Chan et al. Statistica Sinica (2024) <doi:10.5705/ss.202022.0125>.
Recursive partytioning of transformation models with corresponding random forest for conditional transformation models as described in Transformation Forests (Hothorn and Zeileis, 2021, <doi:10.1080/10618600.2021.1872581>) and Top-Down Transformation Choice (Hothorn, 2018, <DOI:10.1177/1471082X17748081>).