Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Handling and manipulation polygons, coordinates, and other geographical objects. The tools include: polygon areas, barycentric and trilinear coordinates (Hormann and Floater, 2006, <doi:10.1145/1183287.1183295>), convex hull for polygons (Graham and Yao, 1983, <doi:10.1016/0196-6774(83)90013-5>), polygon triangulation (Toussaint, 1991, <doi:10.1007/BF01905693>), great circle and geodesic distances, Hausdorff distance, and reduced major axis.
Tensor-train is a compact representation for higher-order tensors. Some algorithms for performing tensor-train decomposition are available such as TT-SVD, TT-WOPT, and TT-Cross. For the details of the algorithms, see I. V. Oseledets (2011) <doi:10.1137/090752286>, Yuan Longao, et al (2017) <doi:10.48550/arXiv.1709.02641>, I. V. Oseledets (2010) <doi:10.1016/j.laa.2009.07.024>.
Delta Method implementation to estimate standard errors with known asymptotic properties within the tidyverse workflow. The Delta Method is a statistical tool that approximates an estimatorâ s behaviour using a Taylor Expansion. For a comprehensive explanation, please refer to Chapter 3 of van der Vaart (1998, ISBN: 9780511802256).
Allows users to analyze text and classify emotions such as happiness, sadness, anger, fear, and neutrality. It combines text preprocessing, TF-IDF (Term Frequency-Inverse Document Frequency) feature extraction, and Random Forest classification to predict emotions and map them to corresponding emojis for enhanced sentiment visualization.
An extension to the R tidy data environment for automated machine learning. The package allows fitting and cross validation of linear regression and classification algorithms on grouped data.
Formula-based user-interfaces to specific transformation models implemented in package mlt (<DOI:10.32614/CRAN.package.mlt>, <DOI:10.32614/CRAN.package.mlt.docreg>). Available models include Cox models, some parametric survival models (Weibull, etc.), models for ordered categorical variables, normal and non-normal (Box-Cox type) linear models, and continuous outcome logistic regression (Lohse et al., 2017, <DOI:10.12688/f1000research.12934.1>). The underlying theory is described in Hothorn et al. (2018) <DOI:10.1111/sjos.12291>. An extension to transformation models for clustered data is provided (Barbanti and Hothorn, 2022, <DOI:10.1093/biostatistics/kxac048>) and a tutorial explains applications in survival analysis (Siegfried et al., 2025, <DOI:10.48550/arXiv.2402.06428>). Multivariate conditional transformation models (Klein et al, 2022, <DOI:10.1111/sjos.12501>) and shift-scale transformation models (Siegfried et al, 2023, <DOI:10.1080/00031305.2023.2203177>) can be fitted as well. The package contains an implementation of a doubly robust score test, described in Kook et al. (2024, <DOI:10.1080/01621459.2024.2395588>).
Framework to run Monte Carlo simulations over a parameter grid. Allows to parallelize the simulations. Generates plots and LaTeX tables summarizing the results from the simulation.
The typicality and eccentricity data analysis (TEDA) framework was put forward by Angelov (2013) <DOI:10.14313/JAMRIS_2-2014/16>. It has been further developed into multiple different techniques since, and provides a non-parametric way of determining how similar an observation, from a process that is not purely random, is to other observations generated by the process. This package provides code to use the batch and recursive TEDA methods that have been published.
Uniform random samples from simple manifolds, sometimes with noise, are commonly used to test topological data analytic (TDA) tools. This package includes samplers powered by two techniques: analytic volume-preserving parameterizations, as employed by Arvo (1995) <doi:10.1145/218380.218500>, and rejection sampling, as employed by Diaconis, Holmes, and Shahshahani (2013) <doi:10.1214/12-IMSCOLL1006>.
This package implements models of leaf temperature using energy balance. It uses units to ensure that parameters are properly specified and transformed before calculations. It allows separate lower and upper surface conductances to heat and water vapour, so sensible and latent heat loss are calculated for each surface separately as in Foster and Smith (1986) <doi:10.1111/j.1365-3040.1986.tb02108.x>. It's straightforward to model leaf temperature over environmental gradients such as light, air temperature, humidity, and wind. It can also model leaf temperature over trait gradients such as leaf size or stomatal conductance. Other references are Monteith and Unsworth (2013, ISBN:9780123869104), Nobel (2009, ISBN:9780123741431), and Okajima et al. (2012) <doi:10.1007/s11284-011-0905-5>.
Bootstrapped response and correlation functions, seasonal correlations and evaluation of reconstruction skills for use in dendroclimatology and dendroecology, see Zang and Biondi (2015) <doi:10.1111/ecog.01335>.
This package provides implementation of the "Topic SCORE" algorithm that is proposed by Tracy Ke and Minzhe Wang. The singular value decomposition step is optimized through the usage of svds() function in RSpectra package, on a dgRMatrix sparse matrix. Also provides a column-wise error measure in the word-topic matrix A, and an algorithm for recovering the topic-document matrix W given A and D based on quadratic programming. The details about the techniques are explained in the paper "A new SVD approach to optimal topic estimation" by Tracy Ke and Minzhe Wang (2017) <arXiv:1704.07016>.
This package provides functions for the retrieval, manipulation, and visualization of geospatial data, with an aim towards producing 3D landscape visualizations in the Unity 3D rendering engine. Functions are also provided for retrieving elevation data and base map tiles from the USGS National Map <https://apps.nationalmap.gov/services/>.
An implementation of fitting generalized linear models on second-order tensor type data. The functions within this package mainly focus on parameter estimation, including parameter coefficients and standard deviation.
Doubly-robust, non-parametric estimators for the transported average treatment effect from Rudolph, Williams, Stuart, and Diaz (2023) <doi:10.48550/arXiv.2304.00117> and the intent-to-treatment average treatment effect from Rudolph and van der Laan (2017) <doi:10.1111/rssb.12213>. Estimators are fit using cross-fitting and nuisance parameters are estimated using the Super Learner algorithm.
This package provides access to the Taxonomic Name Resolution Service <https://github.com/ojalaquellueva/tnrsapi> through R. The user supplies plant taxonomic names and the package returns resolved taxonomic names along with information on decisions. Optionally, the package can also be used to parse taxonomic names.
This package provides a set of functions with a common framework for age-depth model management, stratigraphic visualization, and common statistical transformations. The focus of the package is stratigraphic visualization, for which ggplot2 components are provided to reproduce the scales, geometries, facets, and theme elements commonly used in publication-quality stratigraphic diagrams. Helpers are also provided to reproduce the exploratory statistical summaries that are frequently included on stratigraphic diagrams. See Dunnington et al. (2021) <doi:10.18637/jss.v101.i07>.
Comprehensive functions to calculate sample size and power for clinical trials with two co-primary endpoints. The package supports five endpoint combinations: two continuous endpoints (Sozu et al. 2011 <doi:10.1080/10543406.2011.551329>), two binary endpoints using asymptotic methods (Sozu et al. 2010 <doi:10.1002/sim.3972>) and exact methods (Homma and Yoshida 2025 <doi:10.1177/09622802251368697>), mixed continuous and binary endpoints (Sozu et al. 2012 <doi:10.1002/bimj.201100221>), and mixed count and continuous endpoints (Homma and Yoshida 2024 <doi:10.1002/pst.2337>). All methods appropriately account for correlation between endpoints and provide both sample size and power calculation capabilities.
Computes a point pattern in R^2 or on a graph that is representative of a collection of many data patterns. The result is an approximate barycenter (also known as Fréchet mean or prototype) based on a transport-transform metric. Possible choices include Optimal SubPattern Assignment (OSPA) and Spike Time metrics. Details can be found in Müller, Schuhmacher and Mateu (2020) <doi:10.1007/s11222-020-09932-y>.
This package provides a convenient way to log scalars, images, audio, and histograms in the tfevent record file format. Logged data can be visualized on the fly using TensorBoard', a web based tool that focuses on visualizing the training progress of machine learning models.
Calculation of string distance following the tidy data principles. Built on top of the stringdist package.
This package provides a compilation of fish stock assessment methods for the analysis of length-frequency data in the context of data-poor fisheries. Includes methods and examples included in the FAO Manual by P. Sparre and S.C. Venema (1998), "Introduction to tropical fish stock assessment" (<https://openknowledge.fao.org/server/api/core/bitstreams/bc7c37b6-30df-49c0-b5b4-8367a872c97e/content>), as well as other more recent methods.
Provide functions to estimate the coefficients in high-dimensional linear regressions via a tuning-free and robust approach. The method was published in Wang, L., Peng, B., Bradic, J., Li, R. and Wu, Y. (2020), "A Tuning-free Robust and Efficient Approach to High-dimensional Regression", Journal of the American Statistical Association, 115:532, 1700-1714(JASAâ s discussion paper), <doi:10.1080/01621459.2020.1840989>. See also Wang, L., Peng, B., Bradic, J., Li, R. and Wu, Y. (2020), "Rejoinder to â A tuning-free robust and efficient approach to high-dimensional regression". Journal of the American Statistical Association, 115, 1726-1729, <doi:10.1080/01621459.2020.1843865>; Peng, B. and Wang, L. (2015), "An Iterative Coordinate Descent Algorithm for High-Dimensional Nonconvex Penalized Quantile Regression", Journal of Computational and Graphical Statistics, 24:3, 676-694, <doi:10.1080/10618600.2014.913516>; Clémençon, S., Colin, I., and Bellet, A. (2016), "Scaling-up empirical risk minimization: optimization of incomplete u-statistics", The Journal of Machine Learning Research, 17(1):2682â 2717; Fan, J. and Li, R. (2001), "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties", Journal of the American Statistical Association, 96:456, 1348-1360, <doi:10.1198/016214501753382273>.
Access Open Trade Statistics API from R to download international trade data.