Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
It creates an invisible layer that allow to see the Seurat object as tibble and interact seamlessly with the tidyverse.
This package provides a robust and user-friendly solution for transliterating Ukrainian strings into Latin symbols.
Access Google Trends information. This package provides a tidy wrapper to the gtrendsR package. Use four spaces when indenting paragraphs within the Description.
Computation of t-year survival probabilities and t-year risks with right censored survival data. The Kaplan-Meier estimator is used to provide estimates for data without competing risks and the Aalen-Johansen estimator is used when there are competing risks. Confidence intervals and p-values are obtained using either usual Wald-type inference or empirical likelihood inference, as described in Thomas and Grunkemeier (1975) <doi:10.1080/01621459.1975.10480315> and Blanche (2020) <doi:10.1007/s10985-018-09458-6>. Functions for both one-sample and two-sample inference are provided. Unlike Wald-type inference, empirical likelihood inference always leads to consistent conclusions, in terms of statistical significance, when comparing two risks (or survival probabilities) via either a ratio or a difference.
This package provides a tufte'-alike style for rmarkdown'. A modern take on the Tufte design for pdf and html vignettes, building on the tufte package with additional contributions from the knitr and ggtufte package, and also acknowledging the key influence of envisioned css'.
An implementation of turtle graphics <http://en.wikipedia.org/wiki/Turtle_graphics>. Turtle graphics comes from Papert's language Logo and has been used to teach concepts of computer programming.
Goodness of Fit and Forecast Evaluation Tests for timeseries models. Includes, among others, the Generalized Method of Moments (GMM) Orthogonality Test of Hansen (1982), the Nyblom (1989) parameter constancy test, the sign-bias test of Engle and Ng (1993), and a range of tests for value at risk and expected shortfall evaluation.
This package provides extended data frames, with a special data frame column which contains two indexes, with potentially a nesting structure, and support for tibbles and methods for dplyr'.
Test your data! An extension of the testthat unit testing framework with a family of functions and reporting tools for checking and validating data frames.
This package provides functions to combine data.frames in ways that require additional effort in base R, and to add metadata (id, title, ...) that can be used for printing and xlsx export. The Tatoo_report class is provided as a convenient helper to write several such tables to a workbook, one table per worksheet. Tatoo is built on top of openxlsx', but intimate knowledge of that package is not required to use tatoo.
Fit Bayesian hierarchical models of animal abundance and occurrence via the rstan package, the R interface to the Stan C++ library. Supported models include single-season occupancy, dynamic occupancy, and N-mixture abundance models. Covariates on model parameters are specified using a formula-based interface similar to package unmarked', while also allowing for estimation of random slope and intercept terms. References: Carpenter et al. (2017) <doi:10.18637/jss.v076.i01>; Fiske and Chandler (2011) <doi:10.18637/jss.v043.i10>.
Despite there being a section in RFC 7231 <https://tools.ietf.org/html/rfc7231#section-5.5.3> defining a suggested structure for User-Agent headers this data is notoriously difficult to parse consistently. Tools are provided that will take in user agent strings and return structured R objects. This is a V8'-backed package based on the ua-parser project <https://github.com/ua-parser>.
Returns a data frame with the names of the input data points and hex colors (or CIELab coordinates). Data can be mapped to colors for use in data visualization. It optimally maps data points into a polygon that represents the CIELab colour space. Since Euclidean distance approximates relative perceptual differences in CIELab color space, the result is a color encoding that aims to capture much of the structure of the original data.
Separate a data frame in two based on key columns. The function unjoin() provides an inside-out version of a nested data frame. This is used to identify duplication and normalize it (in the database sense) by linking two tables with the redundancy removed. This is a basic requirement for detecting topology within spatial structures that has motivated the need for this package as a building block for workflows within more applied projects.
Consistent with knitr syntax highlighting, usedthese adds a summary table of package & function usage to a Quarto document and enables aggregation of usage across a website.
Calculate several understandability metrics of BPMN models. BPMN stands for business process modelling notation and is a language for expressing business processes into business process diagrams. Examples of these understandability metrics are: average connector degree, maximum connector degree, sequentiality, cyclicity, diameter, depth, token split, control flow complexity, connector mismatch, connector heterogeneity, separability, structuredness and cross connectivity. See R documentation and paper on metric implementation included in this package for more information concerning the metrics.
The Universal Scalability Law (Gunther 2007) <doi:10.1007/978-3-540-31010-5> is a model to predict hardware and software scalability. It uses system capacity as a function of load to forecast the scalability for the system.
Testing whether two discrete variables have a functional relationship under null distributions where the two variables are statistically independent with fixed marginal counts. The fast enumeration algorithm was based on (Nguyen et al. 2020) <doi:10.24963/ijcai.2020/372>.
This package implements the Gaussian method of first and second order, the Kragten numerical method and the Monte Carlo simulation method for uncertainty estimation and analysis.
Calculates one-sample unbiased central moment estimates and two-sample pooled estimates up to 6th order, including estimates of powers and products of central moments. Provides the machinery for obtaining unbiased central moment estimators beyond 6th order by generating expressions for expectations of raw sample moments and their powers and products. Gerlovina and Hubbard (2019) <doi:10.1080/25742558.2019.1701917>.
Construct and plot objective hierarchies and associated value and utility functions. Evaluate the values and utilities and visualize the results as colored objective hierarchies or tables. Visualize uncertainty by plotting median and quantile intervals within the nodes of objective hierarchies. Get numerical results of the evaluations in standard R data types for further processing.
User-friendly maximum likelihood estimation (Fisher (1921) <doi:10.1098/rsta.1922.0009>) of univariate densities.
Efficient Bayesian implementations of probit, logit, multinomial logit and binomial logit models. Functions for plotting and tabulating the estimation output are available as well. Estimation is based on Gibbs sampling where the Markov chain Monte Carlo algorithms are based on the latent variable representations and marginal data augmentation algorithms described in "Gregor Zens, Sylvia Frühwirth-Schnatter & Helga Wagner (2023). Ultimate Pólya Gamma Samplers â Efficient MCMC for possibly imbalanced binary and categorical data, Journal of the American Statistical Association <doi:10.1080/01621459.2023.2259030>".
An engine for univariate time series forecasting using different regression models in an autoregressive way. The engine provides an uniform interface for applying the different models. Furthermore, it is extensible so that users can easily apply their own regression models to univariate time series forecasting and benefit from all the features of the engine, such as preprocessings or estimation of forecast accuracy.