Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This program realizes a universal estimation approach that accommodates multi-category variables and effect scales, making up for the deficiencies of the existing approaches when dealing with non-binary exposures and complex models. The estimation via bootstrapping can simultaneously provide results of causal mediation on risk difference (RD), odds ratio (OR) and risk ratio (RR) scales with tests of the effects difference. The estimation is also applicable to many other settings, e.g., moderated mediation, inconsistent covariates, panel data, etc. The high flexibility and compatibility make it possible to apply for any type of model, greatly meeting the needs of current empirical researches.
This package provides functions and a Shiny application for downloading, analyzing and visualizing datasets from UCSC Xena (<http://xena.ucsc.edu/>), which is a collection of UCSC-hosted public databases such as TCGA, ICGC, TARGET, GTEx, CCLE, and others.
An educational toolkit for learning statistical concepts through interactive exploration. Provides functions for basic statistics (mean, variance, etc.) and probability distributions with step-by-step explanations and interactive learning modes. Each function can be used for simple calculations, detailed learning with explanations, or interactive practice with feedback.
Model data with a suspected clustering structure (either in co-variate space, regression space or both) using a Bayesian product model with a logistic regression likelihood. Observations are represented graphically and clusters are formed through various edge removals or additions. Cluster quality is assessed through the log Bayesian evidence of the overall model, which is estimated using either a Sequential Monte Carlo sampler or a suitable transformation of the Bayesian Information Criterion as a fast approximation of the former. The internal Iterated Batch Importance Sampling scheme (Chopin (2002 <doi:10.1093/biomet/89.3.539>)) is made available as a free standing function.
This package provides a framework for estimating difference-in-differences with unpoolable data, based on Karim, Webb, Austin, and Strumpf (2024) <doi:10.48550/arXiv.2403.15910>. Supports common or staggered adoption, multiple groups, and the inclusion of covariates. Also computes p-values for the aggregate average treatment effect on the treated via the randomization inference procedure described in MacKinnon and Webb (2020) <doi:10.1016/j.jeconom.2020.04.024>.
The most used functions on IPEA (Instituto de Pesquisa Economica Aplicada). Most of functions deal with brazilian names. It can guess the women single's name, extract prepositions or extract the first name.
This package provides a container for data used by the usmap package. The data used by usmap has been extracted into this package so that the file size of the usmap package can be reduced greatly. The data in this package will be updated roughly once per year as new map data files are provided by the US Census Bureau.
This package provides a method for estimating log-normalizing constants (or free energies) and expectations from multiple distributions (such as multiple generalized ensembles).
Univariate spline regression. It is possible to add the shape constraint of unimodality and predefined or self-defined penalties on the B-spline coefficients.
This package provides methods for managing under- and over-enrollment in Simon's Two-Stage Design are offered by providing adaptive threshold adjustments and sample size recalibration. It also includes post-inference analysis tools to support clinical trial design and evaluation. The package is designed to enhance flexibility and accuracy in trial design, ensuring better outcomes in oncology and other clinical studies. Yunhe Liu, Haitao Pan (2024). Submitted.
This package provides a generic reference Bayesian analysis of unidimensional mixture distributions obtained by a location-scale parameterisation of the model is implemented. The including functions simulate and summarize posterior samples for location-scale mixture models using a weakly informative prior. There is no need to define priors for scale-location parameters except two hyperparameters in which are associated with a Dirichlet prior for weights and a simplex.
Clustering and classification inference for high dimension low sample size (HDLSS) data with U-statistics. The package contains implementations of nonparametric statistical tests for sample homogeneity, group separation, clustering, and classification of multivariate data. The methods have high statistical power and are tailored for data in which the dimension L is much larger than sample size n. See Gabriela B. Cybis, Marcio Valk and SÃ lvia RC Lopes (2018) <doi:10.1080/00949655.2017.1374387>, Marcio Valk and Gabriela B. Cybis (2020) <doi:10.1080/10618600.2020.1796398>, Debora Z. Bello, Marcio Valk and Gabriela B. Cybis (2021) <arXiv:2106.09115>.
Compiled and cleaned the county-level estimates of fertilizer, nitrogen and phosphorus, from 1945 to 2012 in United States of America (USA). The commercial fertilizer data were originally generated by USGS based on the sales data of commercial fertilizer. The manure data were estimated based on county-level population data of livestock, poultry, and other animals. See the user manual for detailed data sources and cleaning methods. usfertilizer utilized the tidyverse to clean the original data and provide user-friendly dataframe. Please note that USGS does not endorse this package. Also data from 1986 is not available for now.
Define and use graphical elements of corporate design manuals in R. The unikn package provides color functions (by defining dedicated colors and color palettes, and commands for finding, changing, viewing, and using them) and styled text elements (e.g., for marking, underlining, or plotting colored titles). The pre-defined range of colors and text decoration functions is based on the corporate design of the University of Konstanz <https://www.uni-konstanz.de/>, but can be adapted and extended for other purposes or institutions.
This package provides an algorithm to detect and characterize disturbances (start, end dates, intensity) that can occur at different hierarchical levels by studying the dynamics of longitudinal observations at the unit level and group level based on Nadaraya-Watson's smoothing curves, but also a shiny app which allows to visualize the observations and the detected disturbances. Finally the package provides a dataframe mimicking a pig farming system subsected to disturbances simulated according to Le et al.(2022) <doi:10.1016/j.animal.2022.100496>.
Fetch United States Congressional Records from their API <https://api.govinfo.gov/docs/> such as congressional speeches, speaker names, and metadata about congressional sessions, and detailed granule records. Optional parameters allow users to specify congressional sessions, and the maximum number of speeches to retrieve. Data is parsed, cleaned, and returned in a structured dataframe for analysis.
This package provides convenience functions for user experience research with an emphasis on quantitative user experience testing and reporting. The functions are designed to translate statistical approaches to applied user experience research.
This package provides a classification (decision) tree is constructed from survival data with high-dimensional covariates. The method is a robust version of the logrank tree, where the variance is stabilized. The main function "uni.tree" returns a classification tree for a given survival dataset. The inner nodes (splitting criterion) are selected by minimizing the P-value of the two-sample the score tests. The decision of declaring terminal nodes (stopping criterion) is the P-value threshold given by an argument (specified by user). This tree construction algorithm is proposed by Emura et al. (2021, in review).
This is a framework that aims to provide methods and tools for assessing the impact of different sources of uncertainties (e.g.positional uncertainty) on performance of species distribution models (SDMs).).
Assess the significance of identified clusters and estimates the true number of clusters by comparing the explained variation due to the clustering from the original data to that produced by clustering a unimodal reference distribution which preserves the covariance structure in the data. The reference distribution is generated using kernel density estimation and a Gaussian copula framework. A dimension reduction strategy and sparse covariance estimation optimize this method for the high-dimensional, low-sample size setting. This method is described in Helgeson, Vock, and Bair (2021) <doi:10.1111/biom.13376>.
If a procedure consists of several stages and there are several models that can be selected for each stage, uncertainty of the procedure can be decomposed by stages or models. This package includes the ANOVA-based method, the cumulative uncertainty-based method, and the balanced decomposition method. Yongdai Kim et al. (2019) <doi:10.1016/j.hydroa.2019.100024> is a related paper which is accessible via the URL below.
Algorithms for checking the accuracy of a clustering result with known classes, computing cluster validity indices, and generating plots for comparing them. The package is compatible with K-means, fuzzy C means, EM clustering, and hierarchical clustering (single, average, and complete linkage). The details of the indices in this package can be found in: J. C. Bezdek, M. Moshtaghi, T. Runkler, C. Leckie (2016) <doi:10.1109/TFUZZ.2016.2540063>, T. Calinski, J. Harabasz (1974) <doi:10.1080/03610927408827101>, C. H. Chou, M. C. Su, E. Lai (2004) <doi:10.1007/s10044-004-0218-1>, D. L. Davies, D. W. Bouldin (1979) <doi:10.1109/TPAMI.1979.4766909>, J. C. Dunn (1973) <doi:10.1080/01969727308546046>, F. Haouas, Z. Ben Dhiaf, A. Hammouda, B. Solaiman (2017) <doi:10.1109/FUZZ-IEEE.2017.8015651>, M. Kim, R. S. Ramakrishna (2005) <doi:10.1016/j.patrec.2005.04.007>, S. H. Kwon (1998) <doi:10.1049/EL:19981523>, S. H. Kwon, J. Kim, S. H. Son (2021) <doi:10.1049/ell2.12249>, G. W. Miligan (1980) <doi:10.1007/BF02293907>, M. K. Pakhira, S. Bandyopadhyay, U. Maulik (2004) <doi:10.1016/j.patcog.2003.06.005>, M. Popescu, J. C. Bezdek, T. C. Havens, J. M. Keller (2013) <doi:10.1109/TSMCB.2012.2205679>, S. Saitta, B. Raphael, I. Smith (2007) <doi:10.1007/978-3-540-73499-4_14>, A. Starczewski (2017) <doi:10.1007/s10044-015-0525-8>, Y. Tang, F. Sun, Z. Sun (2005) <doi:10.1109/ACC.2005.1470111>, N. Wiroonsri (2024) <doi:10.1016/j.patcog.2023.109910>, N. Wiroonsri, O. Preedasawakul (2023) <doi:10.48550/arXiv.2308.14785>, C. H. Wu, C. S. Ouyang, L. W. Chen, L. W. Lu (2015) <doi:10.1109/TFUZZ.2014.2322495>, X. Xie, G. Beni (1991) <doi:10.1109/34.85677> and Rousseeuw (1987) and Kaufman and Rousseeuw(2009) <doi:10.1016/0377-0427(87)90125-7> and <doi:10.1002/9780470316801> C. Alok. (2010).
This package provides a fast and simple URL parser package for R'. This package provides functions to parse URLs into their components, such as scheme, user, password, host, port, path, query, and fragment.
This package provides a set of general functions that I have used in various projects and other R packages. Miscellaneous operations on data frames, matrices and vectors, ROC and PR statistics.