Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides access to the Vagalume API <https://api.vagalume.com.br>. The data extracted is basically lyrics of songs and information about artists/bands.
This package provides a tool for fast, efficient bitwise operations along the elements within a vector. Provides such functionality for AND, OR and XOR, as well as infix operators for all of the binary bitwise operations.
An interface to the Valhalla routing engineâ s application programming interfaces (APIs) for turn-by-turn routing, isochrones, and origin-destination analyses. Also includes several user-friendly functions for plotting outputs, and strives to follow "tidy" design principles. Please note that this package requires access to a running instance of Valhalla', which is open source and can be downloaded from <https://github.com/valhalla/valhalla>.
Calculate point estimates of and valid confidence intervals for nonparametric, algorithm-agnostic variable importance measures in high and low dimensions, using flexible estimators of the underlying regression functions. For more information about the methods, please see Williamson et al. (Biometrics, 2020), Williamson et al. (JASA, 2021), and Williamson and Feng (ICML, 2020).
Compared with the similar graph embedding method such as Laplacian Eigenmaps, Vicus can exploit more local structures of graph data. For the details of the methods, see the reference section of GitHub README.md <https://github.com/rikenbit/Vicus>.
This is a sparklyr extension integrating VariantSpark and R. VariantSpark is a framework based on scala and spark to analyze genome datasets, see <https://bioinformatics.csiro.au/>. It was tested on datasets with 3000 samples each one containing 80 million features in either unsupervised clustering approaches and supervised applications, like classification and regression. The genome datasets are usually writing in VCF, a specific text file format used in bioinformatics for storing gene sequence variations. So, VariantSpark is a great tool for genome research, because it is able to read VCF files, run analyses and return the output in a spark data frame.
This package provides a lexicon and rule-based sentiment analysis tool that is specifically attuned to sentiments expressed in social media, and works well on texts from other domains. Hutto & Gilbert (2014) <https://www.aaai.org/ocs/index.php/ICWSM/ICWSM14/paper/view/8109/8122>.
This package provides a Shiny application and functions for visual exploration of hierarchical clustering with numeric datasets. Allows users to iterative set hyperparameters, select features and evaluate results through various plots and computation of evaluation criteria.
Visualize the trends and historical downloads from packages in the CRAN repository. Data is obtained by using the API to query the database from the RStudio CRAN mirror.
Analyze Peptide Array Data and characterize peptide sequence space. Allows for high level visualization of global signal, Quality control based on replicate correlation and/or relative Kd, calculation of peptide Length/Charge/Kd parameters, Hits selection based on RFU Signal, and amino acid composition/basic motif recognition with RFU signal weighting. Basic signal trends can be used to generate peptides that follow the observed compositional trends.
This package provides fast sampling from von Mises-Fisher distribution using the method proposed by Andrew T.A Wood (1994) <doi:10.1080/03610919408813161>.
Extending the functionalities of the VGAM package with additional functions and datasets. At present, VGAMextra comprises new family functions (ffs) to estimate several time series models by maximum likelihood using Fisher scoring, unlike popular packages in CRAN relying on optim(), including ARMA-GARCH-like models, the Order-(p, d, q) ARIMAX model (non- seasonal), the Order-(p) VAR model, error correction models for cointegrated time series, and ARMA-structures with Student-t errors. For independent data, new ffs to estimate the inverse- Weibull, the inverse-gamma, the generalized beta of the second kind and the general multivariate normal distributions are available. In addition, VGAMextra incorporates new VGLM-links for the mean-function, and the quantile-function (as an alternative to ordinary quantile modelling) of several 1-parameter distributions, that are compatible with the class of VGLM/VGAM family functions. Currently, only fixed-effects models are implemented. All functions are subject to change; see the NEWS for further details on the latest changes.
This package provides methods to calculate the expected value of information from a decision-analytic model. This includes the expected value of perfect information (EVPI), partial perfect information (EVPPI) and sample information (EVSI), and the expected net benefit of sampling (ENBS). A range of alternative computational methods are provided under the same user interface. See Heath et al. (2024) <doi:10.1201/9781003156109>, Jackson et al. (2022) <doi:10.1146/annurev-statistics-040120-010730>.
An interactive document on the topic of variance analysis using rmarkdown and shiny packages. Runtime examples are provided in the package function as well as at <https://predanalyticssessions1.shinyapps.io/chisquareVarianceTest/>.
Implementation of Azure DevOps <https://azure.microsoft.com/> API calls. It enables the extraction of information about repositories, build and release definitions and individual releases. It also helps create repositories and work items within a project without logging into Azure DevOps'. There is the ability to use any API service with a shell for any non-predefined call.
Identification of Latent Patient Phenotype from Electronic Health Records (EHR) Data using Variational Bayes Gaussian Mixture Model for Latent Class Analysis and Variational Bayes regression for Biomarker level shifts, both implemented by Coordinate Ascent Variational Inference algorithms. Variational methods are used to enable Bayesian analysis of very large Electronic Health Records data. For VB GMM details see Bishop (2006,ISBN:9780-387-31073-2). For Logistic VB see Jaakkola and Jordan (2000) <doi:10.1023/A:1008932416310>. Please see preprint of JSS-submitted paper <doi:10.48550/arXiv.2512.14272>.
This package provides a lightweight package for sorting version codes in various forms. No strong dependencies guaranteed.
Application of Variational Mode Decomposition based different Machine Learning models for univariate time series forecasting. For method details see (i) K. Dragomiretskiy and D. Zosso (2014) <doi:10.1109/TSP.2013.2288675>; (ii) Pankaj Das (2020) <http://krishi.icar.gov.in/jspui/handle/123456789/44138>.
Declarative template-based framework for verifying that objects meet structural requirements, and auto-composing error messages when they do not.
This package provides methods for fitting semi-parametric mean and variance models, with normal or censored data. Extended to allow a regression in the location, scale and shape parameters, and further for multiple regression in each.
Generate suggestions for validation rules from a reference data set, which can be used as a starting point for domain specific rules to be checked with package validate'.
Offers a wide range of functions for reading and writing data in various file formats, including CSV, RDS, Excel and ZIP files. Additionally, it provides functions for retrieving metadata associated with files, such as file size and creation date, making it easy to manage and organize large data sets. This package is designed to simplify data import and export tasks, and provide users with a comprehensive set of tools to work with different types of data files.
Trading Strategies for high Option Volatility environment are represented here through their Graphs. The graphic indicators, strategies, calculations, functions and all the discussions are for academic, research, and educational purposes only and should not be construed as investment advice and come with absolutely no Liability. Guy Cohen (â The Bible of Options Strategies (2nd ed.)â , 2015, ISBN: 9780133964028). Zura Kakushadze, Juan A. Serur (â 151 Trading Strategiesâ , 2018, ISBN: 9783030027919). John C. Hull (â Options, Futures, and Other Derivatives (11th ed.)â , 2022, ISBN: 9780136939979).
This package implements the Vector Matching algorithm to match multiple treatment groups based on previously estimated generalized propensity scores. The package includes tools for visualizing initial confounder imbalances, estimating treatment assignment probabilities using various methods, defining the common support region, performing matching across multiple groups, and evaluating matching quality. For more details, see Lopez and Gutman (2017) <doi:10.1214/17-STS612>.