Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a data.frame processor/conditioner that prepares real-world data for predictive modeling in a statistically sound manner. vtreat prepares variables so that data has fewer exceptional cases, making it easier to safely use models in production. Common problems vtreat defends against: Inf', NA', too many categorical levels, rare categorical levels, and new categorical levels (levels seen during application, but not during training). Reference: "'vtreat': a data.frame Processor for Predictive Modeling", Zumel, Mount, 2016, <DOI:10.5281/zenodo.1173313>.
Functionality for creating phase portraits of functions in the complex number plane. Works with R base graphics, whose full functionality is available. Parallel processing is used for optimum performance.
An algorithm for nonlinear global optimization based on the variable neighbourhood trust region search (VNTRS) algorithm proposed by Bierlaire et al. (2009) "A Heuristic for Nonlinear Global Optimization" <doi:10.1287/ijoc.1090.0343>. The algorithm combines variable neighbourhood exploration with a trust-region framework to efficiently search the solution space. It can terminate a local search early if the iterates are converging toward a previously visited local optimum or if further improvement within the current region is unlikely. In addition to global optimization, the algorithm can also be applied to identify multiple local optima.
Visualize Variance is an intuitive shiny applications tailored for agricultural research data analysis, including one-way and two-way analysis of variance, correlation, and other essential statistical tools. Users can easily upload their datasets, perform analyses, and download the results as a well-formatted document, streamlining the process of data analysis and reporting in agricultural research.The experimental design methods are based on classical work by Fisher (1925) and Scheffe (1959). The correlation visualization approaches follow methods developed by Wei & Simko (2021) and Friendly (2002) <doi:10.1198/000313002533>.
An interactive document on the topic of variance analysis using rmarkdown and shiny packages. Runtime examples are provided in the package function as well as at <https://predanalyticssessions1.shinyapps.io/chisquareVarianceTest/>.
This package provides a collection of functions to make R a more effective viewscape analysis tool for calculating viewscape metrics based on computing the viewable area for given a point/multiple viewpoints and a digital elevation model.The method of calculating viewscape metrics implemented in this package are based on the work of Tabrizian et al. (2020) <doi:10.1016/j.landurbplan.2019.103704>. The algorithm of computing viewshed is based on the work of Franklin & Ray. (1994) <https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=555780f6f5d7e537eb1edb28862c86d1519af2be>.
Collapsed Variational Inference for a Dirichlet Process (DP) mixture model with unknown covariance matrix structure and DP concentration parameter. It enables efficient clustering of high-dimensional data with significantly improved computational speed than traditional MCMC methods. The package incorporates 8 parameterisations and corresponding prior choices for the unknown covariance matrix, from which the user can choose and apply accordingly.
Utilities for verifying discrete, continuous and probabilistic forecasts, and forecasts expressed as parametric distributions are included.
An implementation of the Verhoeff algorithm for calculating check digits (Verhoeff, J. (1969) <doi:10.1002/zamm.19710510323>). Functions are provided to calculate a check digit given an input number, calculate and append a check digit to an input number, and validate that a check digit is correct given an input number.
Earth system dynamics, such as plant dynamics, water bodies, and fire regimes, are widely monitored using spectral indicators obtained from multispectral remote sensing products. There is a great need for spectral index catalogues and computing tools as a result of the quick rise of suggested spectral indices. Unfortunately, the majority of these resources lack a standard Application Programming Interface, are out-of-date, closed-source, or are not linked to a catalogue. We now introduce VegSpecIndex', a standardised list of spectral indices for studies of the earth system. A thorough inventory of spectral indices is offered by VegSpecIndex and is connected to an R library. For every spectral index, VegSpecIndex provides a comprehensive collection of information, such as names, formulae, and source references. The user community may add more items to the catalogue, which will keep VegSpecIndex up to date and allow for further scientific uses. Additionally, the R library makes it possible to apply the catalogue to actual data, which makes it easier to employ remote sensing resources effectively across a variety of Earth system domains.
This package provides a Variational Bayesian algorithm for high-dimensional multi-source heterogeneous linear models. More details have been written up in a paper submitted to the journal Statistics in Medicine, and the details of variational Bayesian methods can be found in Ray and Szabo (2021) <doi:10.1080/01621459.2020.1847121>. It simultaneously performs parameter estimation and variable selection. The algorithm supports two model settings: (1) local models, where variable selection is only applied to homogeneous coefficients, and (2) global models, where variable selection is also performed on heterogeneous coefficients. Two forms of Spike-and-Slab priors are available: the Laplace distribution and the Gaussian distribution as the Slab component.
Implementation of a Monte Carlo simulation engine for valuing synthetic portfolios of variable annuities, which reflect realistic features of common annuity contracts in practice. It aims to facilitate the development and dissemination of research related to the efficient valuation of a portfolio of large variable annuities. The main valuation methodology was proposed by Gan (2017) <doi:10.1515/demo-2017-0021>.
This package contains functions for analysis and summary of tidal datasets. Also provides access to tidal data collected by the National Oceanic and Atmospheric Administration's Center for Operational Oceanographic Products and Services and the Permanent Service for Mean Sea Level. For detailed description and application examples, see Hill, T.D. and S.C. Anisfeld (2021) <doi:10.6084/m9.figshare.14161202.v1> and Hill, T.D. and S.C. Anisfeld (2015) <doi:10.1016/j.ecss.2015.06.004>.
Given a partition resulting from any clustering algorithm, the implemented tests allow valid post-clustering inference by testing if a given variable significantly separates two of the estimated clusters. Methods are detailed in: Hivert B, Agniel D, Thiebaut R & Hejblum BP (2022). "Post-clustering difference testing: valid inference and practical considerations", <arXiv:2210.13172>.
This package provides a suite of plots for displaying variable importance and two-way variable interaction jointly. Can also display partial dependence plots laid out in a pairs plot or zenplots style.
This package provides a library for creating time based charts, like Gantt or timelines. Possible outputs include ggplot2 diagrams, plotly.js graphs, Highcharts.js widgets and data.frames. Results can be used in the RStudio viewer pane, in RMarkdown documents or in Shiny apps. In the interactive outputs created by vistime() and hc_vistime(), you can interact with the plot using mouse hover or zoom.
Application of Variational Mode Decomposition based different Machine Learning models for univariate time series forecasting. For method details see (i) K. Dragomiretskiy and D. Zosso (2014) <doi:10.1109/TSP.2013.2288675>; (ii) Pankaj Das (2020) <http://krishi.icar.gov.in/jspui/handle/123456789/44138>.
Handling of vegetation data from different sources ( Turboveg 2.0 <https://www.synbiosys.alterra.nl/turboveg/>; the German national repository <https://www.vegetweb.de> and others. Taxonomic harmonization (given appropriate taxonomic lists, e.g. the Euro+Med list <https://eurosl.infinitenature.org>).
This package provides functions to securely retrieve secrets from a Bitwarden Secrets Manager vault using the Bitwarden CLI', enabling secret and configuration management within R packages and workflows. For more information visit <https://bitwarden.com/products/secrets-manager/>.
This package provides a programmatic interface in R for the US Department of Transportation (DOT) National Highway Transportation Safety Administration (NHTSA) vehicle identification number (VIN) API, located at <https://vpic.nhtsa.dot.gov/api/>. The API can decode up to 50 vehicle identification numbers in one call, and provides manufacturer information about the vehicles, including make, model, model year, and gross vehicle weight rating (GVWR).
Interactive visualization for Bayesian prior and posterior distributions. This package facilitates an animated transition between prior and posterior distributions. Additionally, it splits the distribution into bars based on the provided breaks, displaying the probability for each region. If no breaks are provided, it defaults to zero.
This package contains functions for a variational Bayesian method for sparse PCA proposed by Ning (2020) <arXiv:2102.00305>. There are two algorithms: the PX-CAVI algorithm (if assuming the loadings matrix is jointly row-sparse) and the batch PX-CAVI algorithm (if without this assumption). The outputs of the main function, VBsparsePCA(), include the mean and covariance of the loadings matrix, the score functions, the variable selection results, and the estimated variance of the random noise.
Vector autoregressive (VAR) model is a fundamental and effective approach for multivariate time series analysis. Shrinkage estimation methods can be applied to high-dimensional VAR models with dimensionality greater than the number of observations, contrary to the standard ordinary least squares method. This package is an integrative package delivering nonparametric, parametric, and semiparametric methods in a unified and consistent manner, such as the multivariate ridge regression in Golub, Heath, and Wahba (1979) <doi:10.2307/1268518>, a James-Stein type nonparametric shrinkage method in Opgen-Rhein and Strimmer (2007) <doi:10.1186/1471-2105-8-S2-S3>, and Bayesian estimation methods using noninformative and informative priors in Lee, Choi, and S.-H. Kim (2016) <doi:10.1016/j.csda.2016.03.007> and Ni and Sun (2005) <doi:10.1198/073500104000000622>.
The d3.js framework with the plugins d3-voronoi-map, d3-voronoi-treemap and d3-weighted-voronoi are used to generate Voronoi treemaps in R and in a shiny application. The computation of the Voronoi treemaps are based on Nocaj and Brandes (2012) <doi:10.1111/j.1467-8659.2012.03078.x>.