Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides methods for fitting semi-parametric mean and variance models, with normal or censored data. Extended to allow a regression in the location, scale and shape parameters, and further for multiple regression in each.
Calculate point estimates of and valid confidence intervals for nonparametric, algorithm-agnostic variable importance measures in high and low dimensions, using flexible estimators of the underlying regression functions. For more information about the methods, please see Williamson et al. (Biometrics, 2020), Williamson et al. (JASA, 2021), and Williamson and Feng (ICML, 2020).
Generates interactive plots for analysing and visualising three-class high dimensional data. It is particularly suited to visualising differences in continuous attributes such as gene/protein/biomarker expression levels between three groups. Differential gene/biomarker expression analysis between two classes is typically shown as a volcano plot. However, with three groups this type of visualisation is particularly difficult to interpret. This package generates 3D volcano plots and 3-way polar plots for easier interpretation of three-class data.
You can easily visualize your sf polygons or data.frame with h3 address. While leaflet package is too raw for data analysis, this package can save data analysts efforts & time with pre-set visualize options.
Interactive visualization for Bayesian prior and posterior distributions. This package facilitates an animated transition between prior and posterior distributions. Additionally, it splits the distribution into bars based on the provided breaks, displaying the probability for each region. If no breaks are provided, it defaults to zero.
Visualize Variance is an intuitive shiny applications tailored for agricultural research data analysis, including one-way and two-way analysis of variance, correlation, and other essential statistical tools. Users can easily upload their datasets, perform analyses, and download the results as a well-formatted document, streamlining the process of data analysis and reporting in agricultural research.The experimental design methods are based on classical work by Fisher (1925) and Scheffe (1959). The correlation visualization approaches follow methods developed by Wei & Simko (2021) and Friendly (2002) <doi:10.1198/000313002533>.
Estimates and plots as a heat map the correlation coefficients obtained via the wavelet local multiple correlation WLMC (Fernández-Macho 2018) and the dominant variable/s, i.e., the variable/s that maximizes the multiple correlation through time and scale (Polanco-Martà nez et al. 2020, Polanco-Martà nez 2022). We improve the graphical outputs of WLMC proposing a didactic and useful way to visualize the dominant variable(s) for a set of time series. The WLMC was designed for financial time series, but other kinds of data (e.g., climatic, ecological, etc.) can be used. The functions contained in VisualDom are highly flexible since these contains several parameters to personalize the time series under analysis and the heat maps. In addition, we have also included two data sets (named rdata_climate and rdata_Lorenz') to exemplify the use of the functions contained in VisualDom'. Methods derived from Fernández-Macho (2018) <doi:10.1016/j.physa.2017.11.050>, Polanco-Martà nez et al. (2020) <doi:10.1038/s41598-020-77767-8> and Polanco-Martà nez (2023, in press).
This package provides tools for visibility analysis in geospatial data. It offers functionality to perform isovist calculations, using arbitrary geometries as both viewpoints and occluders.
Estimates hierarchical models using variational inference. At present, it can estimate logistic, linear, and negative binomial models. It can accommodate models with an arbitrary number of random effects and requires no integration to estimate. It also provides the ability to improve the quality of the approximation using marginal augmentation. Goplerud (2022) <doi:10.1214/21-BA1266> and Goplerud (2024) <doi:10.1017/S0003055423000035> provide details on the variational algorithms.
Implementation of shiny app to visualize adverse events based on the Common Terminology Criteria for Adverse Events (CTCAE) using stacked correspondence analysis as described in Diniz et. al (2021)<doi:10.1186/s12874-021-01368-w>.
This package provides fast sampling from von Mises-Fisher distribution using the method proposed by Andrew T.A Wood (1994) <doi:10.1080/03610919408813161>.
Built on graph theory and the high-performance data.table framework, this package provides a comprehensive suite of tools for tidying, pruning, and visualizing animal pedigrees. By modeling pedigrees as directed acyclic graphs using igraph', it ensures robust loop detection, efficient generation assignment, and sophisticated hierarchical layouts. Key features include standardizing pedigree formats, flexible ancestry tracing, and generating legible vector-based PDF graphs. A unique compaction algorithm enables the visualization of massive pedigrees (e.g., in aquaculture selective breeding population) by grouping full-sib families, maintaining structural clarity without overcrowding.
Fits generalized additive models (GAMs) using a variational approximations (VA) framework. In brief, the VA framework provides a fully or at least closed to fully tractable lower bound approximation to the marginal likelihood of a GAM when it is parameterized as a mixed model (using penalized splines, say). In doing so, the VA framework aims offers both the stability and natural inference tools available in the mixed model approach to GAMs, while achieving computation times comparable to that of using the penalized likelihood approach to GAMs. See Hui et al. (2018) <doi:10.1080/01621459.2018.1518235>.
Facilitates use and analysis of data about the armed conflict in Colombia resulting from the joint project between La Jurisdicción Especial para la Paz (JEP), La Comisión para el Esclarecimiento de la Verdad, la Convivencia y la No repetición (CEV), and the Human Rights Data Analysis Group (HRDAG). The data are 100 replicates from a multiple imputation through chained equations as described in Van Buuren and Groothuis-Oudshoorn (2011) <doi:10.18637/jss.v045.i03>. With the replicates the user can examine four human rights violations that occurred in the Colombian conflict accounting for the impact of missing fields and fully missing observations.
This package provides a visualization for characterizing subgroups defined by a decision tree structure. The visualization simplifies the ability to interpret individual pathways to subgroups; each sub-plot describes the distribution of observations within individual terminal nodes and percentile ranges for the associated inner nodes.
Variational Autoencoded Multivariate Spatial Fay-Herriot models are designed to efficiently estimate population parameters in small area estimation. This package implements the variational generalized multivariate spatial Fay-Herriot model (VGMSFH) using NumPyro and PyTorch backends, as demonstrated by Wang, Parker, and Holan (2025) <doi:10.48550/arXiv.2503.14710>. The vmsae package provides utility functions to load weights of the pretrained variational autoencoders (VAEs) as well as tools to train custom VAEs tailored to users specific applications.
Export dataframes and automatically start importing into Vorteks'. Vorteks Visualization Environment (VVE) and Vorteks Data Manager (VDM) will start an import. Vorteks Processing Environment (VPE) will start a new project and add a file reader with the dataframe file already set. Warning: WINDOWS ONLY. Requires installation of Vorteks software.
This package provides a graphical user interface to integrate, visualize and explore results from linkage and quantitative trait loci analysis, together with genomic information for autopolyploid species. The app is meant for interactive use and allows users to optionally upload different sources of information, including gene annotation and alignment files, enabling the exploitation and search for candidate genes in a genome browser. In its current version, VIEWpoly supports inputs from MAPpoly', polymapR', diaQTL', QTLpoly', polyqtlR', GWASpoly', and HIDECAN packages.
The variable importance is calculated using knock off variables. Then output can be provided in numerical and graphical form. Meredith L Wallace (2023) <doi:10.1186/s12874-023-01965-x>.
Facilitates modeling species ecological niches and geographic distributions based on occurrences and environments that have a vertical as well as horizontal component, and projecting models into three-dimensional geographic space. Working in three dimensions is useful in an aquatic context when the organisms one wishes to model can be found across a wide range of depths in the water column. The package also contains functions to automatically generate marine training model training regions using machine learning, and interpolate and smooth patchily sampled environmental rasters using thin plate splines. Davis Rabosky AR, Cox CL, Rabosky DL, Title PO, Holmes IA, Feldman A, McGuire JA (2016) <doi:10.1038/ncomms11484>. Nychka D, Furrer R, Paige J, Sain S (2021) <doi:10.5065/D6W957CT>. Pateiro-Lopez B, Rodriguez-Casal A (2022) <https://CRAN.R-project.org/package=alphahull>.
This package provides users with a simple and convenient mechanism to manage and query a Virtuoso database using the DBI (Data-Base Interface) compatible ODBC (Open Database Connectivity) interface. Virtuoso is a high-performance "universal server," which can act as both a relational database, supporting standard Structured Query Language ('SQL') queries, while also supporting data following the Resource Description Framework ('RDF') model for Linked Data. RDF data can be queried using SPARQL ('SPARQL Protocol and RDF Query Language) queries, a graph-based query that supports semantic reasoning. This allows users to leverage the performance of local or remote Virtuoso servers using popular R packages such as DBI and dplyr', while also providing a high-performance solution for working with large RDF triplestores from R. The package also provides helper routines to install, launch, and manage a Virtuoso server locally on Mac', Windows and Linux platforms using the standard interactive installers from the R command-line. By automatically handling these setup steps, the package can make using Virtuoso considerably faster and easier for a most users to deploy in a local environment. Managing the bulk import of triples from common serializations with a single intuitive command is another key feature of this package. Bulk import performance can be tens to hundreds of times faster than the comparable imports using existing R tools, including rdflib and redland packages.
Analysis of minor alleles in Illumina sequencing data of viral genomes. Functions in vivaldi primarily operate on vcf files.
Describe in words the genealogical relationship between two members of a given pedigree, using the algorithm in Vigeland (2022) <doi:10.1186/s12859-022-04759-y>. verbalisr is part of the pedsuite collection of packages for pedigree analysis. For a demonstration of verbalisr', see the online app QuickPed at <https://magnusdv.shinyapps.io/quickped>.
This is a package for creating and running Agent Based Models (ABM). It provides a set of base classes with core functionality to allow bootstrapped models. For more intensive modeling, the supplied classes can be extended to fit researcher needs.