Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Conversion of characters from unsupported Vietnamese character encodings to Unicode characters. These Vietnamese encodings (TCVN3, VISCII, VPS) are not natively supported in R and lead to printing of wrong characters and garbled text (mojibake). This package fixes that problem and provides readable output with the correct Unicode characters (with or without diacritics).
Comparison of variance - covariance patterns using relative principal component analysis (relative eigenanalysis), as described in Le Maitre and Mitteroecker (2019) <doi:10.1111/2041-210X.13253>. Also provides functions to compute group covariance matrices, distance matrices, and perform proportionality tests. A worked sample on the body shape of cichlid fishes is included, based on the dataset from Kerschbaumer et al. (2013) <doi:10.5061/dryad.fc02f>.
Various methods to count ballots in voting systems are provided. Functions to check validity of ballots are also provided to ensure flexibility.
Utilizes multiple variable selection methods to estimate Average Treatment Effect.
Generates interactive plots for analysing and visualising three-class high dimensional data. It is particularly suited to visualising differences in continuous attributes such as gene/protein/biomarker expression levels between three groups. Differential gene/biomarker expression analysis between two classes is typically shown as a volcano plot. However, with three groups this type of visualisation is particularly difficult to interpret. This package generates 3D volcano plots and 3-way polar plots for easier interpretation of three-class data.
Simplifies functions assess normality for bivariate and multivariate statistical techniques. Includes functions designed to replicate plots and tables that would result from similar calls in SPSS', including hst(), box(), qq(), tab(), cormat(), and residplot(). Also includes simplified formulae, such as mode(), scatter(), p.corr(), ow.anova(), and rm.anova().
Models categorical time series through a Markov Chain when a) covariates are predictors for transitioning into the next state/symbol and b) when the dependence in the past states has variable length. The probability of transitioning to the next state in the Markov Chain is defined by a multinomial regression whose parameters depend on the past states of the chain and, moreover, the number of states in the past needed to predict the next state also depends on the observed states themselves. See Zambom, Kim, and Garcia (2022) <doi:10.1111/jtsa.12615>.
This package provides access to the Vagalume API <https://api.vagalume.com.br>. The data extracted is basically lyrics of songs and information about artists/bands.
Realization of published methods to analyze visual field (VF) progression. Introduction to the plotting methods (designed by author TE) for VF output visualization. A sample dataset for two eyes, each with 10 follow-ups is included. The VF analysis methods could be found in -- Musch et al. (1999) <doi:10.1016/S0161-6420(99)90147-1>, Nouri-Mahdavi et at. (2012) <doi:10.1167/iovs.11-9021>, Schell et at. (2014) <doi:10.1016/j.ophtha.2014.02.021>, Aptel et al. (2015) <doi:10.1111/aos.12788>.
This package provides a set of functions to: (1) perform fuzzy clustering of vegetation data (De Caceres et al, 2010) <doi:10.1111/j.1654-1103.2010.01211.x>; (2) to assess ecological community similarity on the basis of structure and composition (De Caceres et al, 2013) <doi:10.1111/2041-210X.12116>.
Facilitate the analysis of inter-limb and intra-limb coordination in human movement. It provides functions for calculating the phase angle between two segments, enabling researchers and practitioners to quantify the coordination patterns within and between limbs during various motor tasks. Needham, R., Naemi, R., & Chockalingam, N. (2014) <doi:10.1016/j.jbiomech.2013.12.032>. Needham, R., Naemi, R., & Chockalingam, N. (2015) <doi:10.1016/j.jbiomech.2015.07.023>. Tepavac, D., & Field-Fote, E. C. (2001) <doi:10.1123/jab.17.3.259>. Park, J.H., Lee, H., Cho, Js. et al. (2021) <doi:10.1038/s41598-020-80237-w>.
Although model selection is ubiquitous in scientific discovery, the stability and uncertainty of the selected model is often hard to evaluate. How to characterize the random behavior of the model selection procedure is the key to understand and quantify the model selection uncertainty. This R package offers several graphical tools to visualize the distribution of the selected model. For example, Gplot(), Hplot(), VDSM_scatterplot() and VDSM_heatmap(). To the best of our knowledge, this is the first attempt to visualize such a distribution. About what distribution of selected model is and how it work please see Qin,Y.and Wang,L. (2021) "Visualization of Model Selection Uncertainty" <https://homepages.uc.edu/~qinyn/VDSM/VDSM.html>.
Tool for easy and efficient discretization of continuous and categorical data. The package calculates the most optimal binning of a given explanatory variable with respect to a user-specified target variable. The purpose is to assign a unique Weight-of-Evidence value to each of the calculated binpoints in order to recode the original variable. The package allows users to impose certain restrictions on the functional form on the resulting binning while maximizing the overall information value in the original data. The package is well suited for logistic scoring models where input variables may be subject to restrictions such as linearity by e.g. regulatory authorities. An excellent source describing in detail the development of scorecards, and the role of Weight-of-Evidence coding in credit scoring is (Siddiqi 2006, ISBN: 978â 0-471â 75451â 0). The package utilizes the discrete nature of decision trees and Isotonic Regression to accommodate the trade-off between flexible functional forms and maximum information value.
Variance function estimation for models proposed by W. Sadler in his variance function program ('VFP', www.aacb.asn.au/AACB/Resources/Variance-Function-Program). Here, the idea is to fit multiple variance functions to a data set and consequently assess which function reflects the relationship Var ~ Mean best. For in-vitro diagnostic ('IVD') assays modeling this relationship is of great importance when individual test-results are used for defining follow-up treatment of patients.
This package provides tools for designing virus protein panels through sequence clustering and protein sequence analysis. The package includes functionality for filtering sequences, removing redundancy, identifying outliers, clustering sequences, and calculating entropy to evaluate clustering quality. A publication describing these methods is in preparation and will be added once available.
To computed the variability independent of mean (VIM) or variation independent of mean (VIM). The methodology can be found at Peter M Rothwell et al. (2010) <doi:10.1016/S1474-4422(10)70067-3>.
This package provides a variety of tools to allow the quantification of videos of the lymphatic vasculature taken under an operating microscope. Lymphatic vessels that have been injected with a variety of blue dyes can be tracked throughout the video to determine their width over time. Code is optimised for efficient processing of multiple large video files. Functions to calculate physiologically relevant parameters and generate graphs from these values are also included.
Analyze the co-adaptation of codon usage between a virus and its host, calculate various codon usage bias measurements as: effective number of codons (ENc) Novembre (2002) <doi:10.1093/oxfordjournals.molbev.a004201>, codon adaptation index (CAI) Sharp and Li (1987) <doi:10.1093/nar/15.3.1281>, relative codon deoptimization index (RCDI) Puigbò et al (2010) <doi:10.1186/1756-0500-3-87>, similarity index (SiD) Zhou et al (2013) <doi:10.1371/journal.pone.0077239>, synonymous codon usage orderliness (SCUO) Wan et al (2004) <doi:10.1186/1471-2148-4-19> and, relative synonymous codon usage (RSCU) Sharp et al (1986) <doi:10.1093/nar/14.13.5125>. Also, it provides a statistical dinucleotide over- and underrepresentation with three different models. Implement several methods for visualization of codon usage as ENc.GC3plot() and PR2.plot().
Empirical models for runoff, erosion, and phosphorus loss across a vegetated filter strip, given slope, soils, climate, and vegetation (Gall et al., 2018) <doi:10.1007/s00477-017-1505-x>. It also includes functions for deriving climate parameters from measured daily weather data, and for simulating rainfall. Models implemented include MUSLE (Williams, 1975) and APLE (Vadas et al., 2009 <doi:10.2134/jeq2008.0337>).
Variable Penalty Dynamic Time Warping (VPdtw) for aligning chromatographic signals. With an appropriate penalty this method performs good alignment of chromatographic data without deforming the peaks (Clifford, D., Stone, G., Montoliu, I., Rezzi S., Martin F., Guy P., Bruce S., and Kochhar S.(2009) <doi:10.1021/ac802041e>; Clifford, D. and Stone, G. (2012) <doi:10.18637/jss.v047.i08>).
This package implements the Variable importance Explainable Elastic Shape Analysis pipeline for explainable machine learning with functional data inputs. Converts training and testing data functional inputs to elastic shape analysis principal components that account for vertical and/or horizontal variability. Computes feature importance to identify important principal components and visualizes variability captured by functional principal components. See Goode et al. (2025) <doi:10.48550/arXiv.2501.07602> for technical details about the methodology.
Uses a Bayesian model to estimate the variability in a repeated measure outcome and use that as an outcome or a predictor in a second stage model.
Allow R users to interact with the Canvas Learning Management System (LMS) API (see <https://canvas.instructure.com/doc/api/all_resources.html> for details). It provides a set of functions to access and manipulate course data, assignments, grades, users, and other resources available through the Canvas API.
Add publication-quality custom legends with vertical brackets. Designed for displaying statistical comparisons between groups, commonly used in scientific publications for showing significance levels. Features include adaptive positioning, automatic bracket spacing for overlapping comparisons, font family inheritance, and support for asterisks, p-values, or custom labels. Compatible with ggplot2 graphics.