Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Calibrates cause-specific mortality fractions (CSMF) estimates generated by computer-coded verbal autopsy (CCVA) algorithms from WHO-standardized verbal autopsy (VA) survey data. It leverages data from the multi-country Child Health and Mortality Prevention Surveillance (CHAMPS) project <https://champshealth.org/>, which determines gold standard causes of death via Minimally Invasive Tissue Sampling (MITS). By modeling the CHAMPS data using the misclassification matrix modeling framework proposed in Pramanik et al. (2025, <doi:10.1214/24-AOAS2006>), the package includes an inventory of 48 uncertainty-quantified misclassification matrices for three CCVA algorithms (EAVA, InSilicoVA, InterVA), two age groups (neonates aged 0-27 days and children aged 1-59 months), and eight "countries" (seven countries in CHAMPS -- Bangladesh, Ethiopia, Kenya, Mali, Mozambique, Sierra Leone, South Africa -- and an estimate for countries not in CHAMPS). Given a VA-only data for an age group, CCVA algorithm, and country, the package uses the corresponding uncertainty-quantified misclassification matrix estimates as an informative prior, and utilizes the modular VA-calibration to produce calibrated CSMF estimates. It also supports ensemble calibration when VA-only data are provided for multiple algorithms. More generally, the package can be applied to calibrate predictions from a discrete classifier (or ensemble of classifiers) utilizing user-provided fixed or uncertainty-quantified misclassification matrices. This work is supported by the Bill and Melinda Gates Foundation Grant INV-034842.
This package provides fast sampling from von Mises-Fisher distribution using the method proposed by Andrew T.A Wood (1994) <doi:10.1080/03610919408813161>.
Vega and Vega-Lite parse text in JSON notation to render chart-specifications into HTML'. This package is used to facilitate the rendering. It also provides a means to interact with signals, events, and datasets in a Vega chart using JavaScript or Shiny'.
This package provides a suite of analytical functionalities to process and analyze visual meteor observations from the Visual Meteor Database of the International Meteor Organization <https://www.imo.net/>.
This package provides a set of functions for data transformations. Transformations are performed on character and numeric data. As the scope of the package is within Student Analytics, there are functions focused around the academic year.
This package provides tools for 3D point cloud voxelisation, projection, geometrical and morphological description of trees (DBH, height, volume, crown diameter), analyses of temporal changes between different measurement times, distance based clustering and visualisation of 3D voxel clouds and 2D projection. Most analyses and algorithms provided in the package are based on the concept of space exploration and are described in Lecigne et al. (2018, <doi:10.1093/aob/mcx095>).
Trading Strategies for high Option Volatility environment are represented here through their Graphs. The graphic indicators, strategies, calculations, functions and all the discussions are for academic, research, and educational purposes only and should not be construed as investment advice and come with absolutely no Liability. Guy Cohen (â The Bible of Options Strategies (2nd ed.)â , 2015, ISBN: 9780133964028). Zura Kakushadze, Juan A. Serur (â 151 Trading Strategiesâ , 2018, ISBN: 9783030027919). John C. Hull (â Options, Futures, and Other Derivatives (11th ed.)â , 2022, ISBN: 9780136939979).
Full model selection (detection of the relevant features and estimation of the number of clusters) for model-based clustering (see reference here <doi:10.1007/s11222-016-9670-1>). Data to analyze can be continuous, categorical, integer or mixed. Moreover, missing values can occur and do not necessitate any pre-processing. Shiny application permits an easy interpretation of the results.
Declare data validation rules and data quality indicators; confront data with them and analyze or visualize the results. The package supports rules that are per-field, in-record, cross-record or cross-dataset. Rules can be automatically analyzed for rule type and connectivity. Supports checks implied by an SDMX DSD file as well. See also Van der Loo and De Jonge (2018) <doi:10.1002/9781118897126>, Chapter 6 and the JSS paper (2021) <doi:10.18637/jss.v097.i10>.
Generating realizations of a fractal Brownian function on uniform 1D & 2D grid with classic and generic versions of the Voss algorithm (random sequential additions).
Rule sets with validation rules may contain redundancies or contradictions. Functions for finding redundancies and problematic rules are provided, given a set a rules formulated with validate'.
This package provides tools for estimating vaccine effectiveness and related metrics. The vaccineff_data class manages key features for preparing, visualizing, and organizing cohort data, as well as estimating vaccine effectiveness. The results and model performance are assessed using the vaccineff class.
This package performs analysis of various genetic parameters like genotypic and phenotypic coefficient of variance, heritability, genetic advance, genetic advance as a percentage of mean. The package also has functions for genotypic and phenotypic covariance, correlation and path analysis. Dataset has been added to facilitate example. For more information refer Singh, R.K. and Chaudhary, B.D. (1977, ISBN:81766330709788176633079).
Bayesian variable selection using shrinkage priors to identify significant variables in high-dimensional datasets. The package includes methods for determining the number of significant variables through innovative clustering techniques of posterior distributions, specifically utilizing the 2-Means and Sequential 2-Means (S2M) approaches. The package aims to simplify the variable selection process with minimal tuning required in statistical analysis.
Implementation of shiny app to visualize adverse events based on the Common Terminology Criteria for Adverse Events (CTCAE) using stacked correspondence analysis as described in Diniz et. al (2021)<doi:10.1186/s12874-021-01368-w>.
This package provides functions for metrics and plots for model evaluation. Based on vectors of observed and predicted values. Method: Kristin Piikki, Johanna Wetterlind, Mats Soderstrom and Bo Stenberg (2021). <doi:10.1111/SUM.12694>.
An implementation of the Likelihood ratio Test (LRT) for testing that, in a (non)linear mixed effects model, the variances of a subset of the random effects are equal to zero. There is no restriction on the subset of variances that can be tested: for example, it is possible to test that all the variances are equal to zero. Note that the implemented test is asymptotic. This package should be used on model fits from packages nlme', lmer', and saemix'. Charlotte Baey and Estelle Kuhn (2019) <doi:10.18637/jss.v107.i06>.
Estimates the predicted 10-year cardiovascular (CVD) risk score (in probability) for civilian women, women military service members and veterans by inputting patient profiles. The proposed women CVD risk score improves the accuracy of the existing American College of Cardiology/American Heart Association CVD risk assessment tool in predicting longâ term CVD risk for VA women, particularly in young and racial/ethnic minority women. See the reference: Jeonâ Slaughter, H., Chen, X., Tsai, S., Ramanan, B., & Ebrahimi, R. (2021) <doi:10.1161/JAHA.120.019217>.
Constructs a virtual population from fertility and mortality rates for any country, calendar year and birth cohort in the Human Mortality Database <https://www.mortality.org> and the Human Fertility Database <https://www.humanfertility.org>. Fertility histories are simulated for every individual and their offspring, producing a multi-generation virtual population.
Calculate point estimates of and valid confidence intervals for nonparametric, algorithm-agnostic variable importance measures in high and low dimensions, using flexible estimators of the underlying regression functions. For more information about the methods, please see Williamson et al. (Biometrics, 2020), Williamson et al. (JASA, 2021), and Williamson and Feng (ICML, 2020).
Visualize the trends and historical downloads from packages in the CRAN repository. Data is obtained by using the API to query the database from the RStudio CRAN mirror.
Multi-precision library that allows to store and operate with arbitrarily big integers without loss of precision. It includes a large list of tools to work with them, like: - Arithmetic and logic operators - Modular-arithmetic operators - Computer Number Theory utilities - Probabilistic primality tests - Factorization algorithms - Random generators of diferent types of integers.
This package provides statistical methods for the design and analysis of a calibration study, which aims for calibrating measurements using two different methods. The package includes sample size calculation, sample selection, regression analysis with error-in measurements and change-point regression. The method is described in Tian, Durazo-Arvizu, Myers, et al. (2014) <DOI:10.1002/sim.6235>.
This package provides a general framework for constructing variable importance plots from various types of machine learning models in R. Aside from some standard model- specific variable importance measures, this package also provides model- agnostic approaches that can be applied to any supervised learning algorithm. These include 1) an efficient permutation-based variable importance measure, 2) variable importance based on Shapley values (Strumbelj and Kononenko, 2014) <doi:10.1007/s10115-013-0679-x>, and 3) the variance-based approach described in Greenwell et al. (2018) <doi:10.48550/arXiv.1805.04755>. A variance-based method for quantifying the relative strength of interaction effects is also included (see the previous reference for details).