Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Random generation, density function and parameter estimation for the Voigt distribution. The main objective of this package is to provide R users with efficient estimation of Voigt parameters using classic iid data in a Bayesian framework. The estimating function allows flexible prior specification, specification of fixed parameters and several options for Markov Chain Monte Carlo posterior simulation. A basic version of the algorithm is described in: Cannas M. and Piras, N. (2025) <doi:10.1007/978-3-031-96303-2_53>.
Facilitate the analysis of inter-limb and intra-limb coordination in human movement. It provides functions for calculating the phase angle between two segments, enabling researchers and practitioners to quantify the coordination patterns within and between limbs during various motor tasks. Needham, R., Naemi, R., & Chockalingam, N. (2014) <doi:10.1016/j.jbiomech.2013.12.032>. Needham, R., Naemi, R., & Chockalingam, N. (2015) <doi:10.1016/j.jbiomech.2015.07.023>. Tepavac, D., & Field-Fote, E. C. (2001) <doi:10.1123/jab.17.3.259>. Park, J.H., Lee, H., Cho, Js. et al. (2021) <doi:10.1038/s41598-020-80237-w>.
Allow R users to interact with the Canvas Learning Management System (LMS) API (see <https://canvas.instructure.com/doc/api/all_resources.html> for details). It provides a set of functions to access and manipulate course data, assignments, grades, users, and other resources available through the Canvas API.
Craft polished tables and plots in Markdown reports. Simply choose whether to treat your data as counts or metrics, and the package will automatically generate well-designed default tables and plots for you. Boiled down to the basics, with labeling features and simple interactive reports. All functions are tidyverse compatible.
This package provides a collection of statistical tests for martingale difference hypothesis, including automatic portmanteau test (Escansiano and Lobato, 2009) <doi:10.1016/j.jeconom.2009.03.001> and automatic variance ratio test (Kim, 2009) <doi:10.1016/j.frl.2009.04.003>.
Time series decomposition for univariate time series using the "Verallgemeinerte Berliner Verfahren" (Generalized Berlin Method) as described in Kontinuierliche Messgröà en und Stichprobenstrategien in Raum und Zeit mit Anwendungen in den Natur-, Umwelt-, Wirtschafts- und Finanzwissenschaften', by Hebbel and Steuer, Springer Berlin Heidelberg, 2022 <doi:10.1007/978-3-662-65638-9>, or Decomposition of Time Series using the Generalised Berlin Method (VBV) by Hebbel and Steuer, in Jan Beran, Yuanhua Feng, Hartmut Hebbel (Eds.): Empirical Economic and Financial Research - Theory, Methods and Practice, Festschrift in Honour of Prof. Siegfried Heiler. Series: Advanced Studies in Theoretical and Applied Econometrics. Springer 2014, p. 9-40.
Calculates the volume under the ROC surface and its (co)variance for ordered multi-class ROC analysis as well as certain bivariate ordinal measures of association.
This package provides a reference implementation of the Vertical Weighted Strips method explored by Raim, Livsey, and Irimata (2025) <doi:10.48550/arXiv.2401.09696> for rejection sampling.
This package implements the novel testing approach by Janitza et al.(2015) <http://nbn-resolving.de/urn/resolver.pl?urn=nbn:de:bvb:19-epub-25587-4> for the permutation variable importance measure in a random forest and the PIMP-algorithm by Altmann et al.(2010) <doi:10.1093/bioinformatics/btq134>. Janitza et al.(2015) <http://nbn-resolving.de/urn/resolver.pl?urn=nbn:de:bvb:19-epub-25587-4> do not use the "standard" permutation variable importance but the cross-validated permutation variable importance for the novel test approach. The cross-validated permutation variable importance is not based on the out-of-bag observations but uses a similar strategy which is inspired by the cross-validation procedure. The novel test approach can be applied for classification trees as well as for regression trees. However, the use of the novel testing approach has not been tested for regression trees so far, so this routine is meant for the expert user only and its current state is rather experimental.
Computes the random forest variable importance (VIMP) for the conditional inference random forest (cforest) of the party package. Includes a function (varImp) that computes the VIMP for arbitrary measures from the measures package. For calculating the VIMP regarding the measures accuracy and AUC two extra functions exist (varImpACC and varImpAUC).
Calibrates cause-specific mortality fractions (CSMF) estimates generated by computer-coded verbal autopsy (CCVA) algorithms from WHO-standardized verbal autopsy (VA) survey data. It leverages data from the multi-country Child Health and Mortality Prevention Surveillance (CHAMPS) project <https://champshealth.org/>, which determines gold standard causes of death via Minimally Invasive Tissue Sampling (MITS). By modeling the CHAMPS data using the misclassification matrix modeling framework proposed in Pramanik et al. (2025, <doi:10.1214/24-AOAS2006>), the package includes an inventory of 48 uncertainty-quantified misclassification matrices for three CCVA algorithms (EAVA, InSilicoVA, InterVA), two age groups (neonates aged 0-27 days and children aged 1-59 months), and eight "countries" (seven countries in CHAMPS -- Bangladesh, Ethiopia, Kenya, Mali, Mozambique, Sierra Leone, South Africa -- and an estimate for countries not in CHAMPS). Given a VA-only data for an age group, CCVA algorithm, and country, the package uses the corresponding uncertainty-quantified misclassification matrix estimates as an informative prior, and utilizes the modular VA-calibration to produce calibrated CSMF estimates. It also supports ensemble calibration when VA-only data are provided for multiple algorithms. More generally, the package can be applied to calibrate predictions from a discrete classifier (or ensemble of classifiers) utilizing user-provided fixed or uncertainty-quantified misclassification matrices. This work is supported by the Bill and Melinda Gates Foundation Grant INV-034842.
Variational Autoencoded Multivariate Spatial Fay-Herriot models are designed to efficiently estimate population parameters in small area estimation. This package implements the variational generalized multivariate spatial Fay-Herriot model (VGMSFH) using NumPyro and PyTorch backends, as demonstrated by Wang, Parker, and Holan (2025) <doi:10.48550/arXiv.2503.14710>. The vmsae package provides utility functions to load weights of the pretrained variational autoencoders (VAEs) as well as tools to train custom VAEs tailored to users specific applications.
Turn R analysis outputs into full sentences, by writing vectors into in-sentence lists, pluralising words conditionally, spelling out numbers if they are at the start of sentences, writing out dates in full following US or UK style, and managing capitalisations in tidy data.
Converts Vietnam's provinces names and ID across different formats. Handles diacritics and different spellings.
Facilitates modeling species ecological niches and geographic distributions based on occurrences and environments that have a vertical as well as horizontal component, and projecting models into three-dimensional geographic space. Working in three dimensions is useful in an aquatic context when the organisms one wishes to model can be found across a wide range of depths in the water column. The package also contains functions to automatically generate marine training model training regions using machine learning, and interpolate and smooth patchily sampled environmental rasters using thin plate splines. Davis Rabosky AR, Cox CL, Rabosky DL, Title PO, Holmes IA, Feldman A, McGuire JA (2016) <doi:10.1038/ncomms11484>. Nychka D, Furrer R, Paige J, Sain S (2021) <doi:10.5065/D6W957CT>. Pateiro-Lopez B, Rodriguez-Casal A (2022) <https://CRAN.R-project.org/package=alphahull>.
This package provides new classes for (rotated) BB1, BB6, BB7, BB8, and Tawn copulas, extends the existing Gumbel and Clayton families with rotations, and allows to set up a vine copula model using the copula API. Corresponding objects from the VineCopula API can easily be converted.
This package provides a Variational Bayesian algorithm for high-dimensional multi-source heterogeneous linear models. More details have been written up in a paper submitted to the journal Statistics in Medicine, and the details of variational Bayesian methods can be found in Ray and Szabo (2021) <doi:10.1080/01621459.2020.1847121>. It simultaneously performs parameter estimation and variable selection. The algorithm supports two model settings: (1) local models, where variable selection is only applied to homogeneous coefficients, and (2) global models, where variable selection is also performed on heterogeneous coefficients. Two forms of Spike-and-Slab priors are available: the Laplace distribution and the Gaussian distribution as the Slab component.
This package contains variable, diversity, and joining sequences and accompanying functions that enable both the extraction of and comparison between immune V-D-J genomic segments from a variety of species. Sources include IMGT from MP Lefranc (2009) <doi:10.1093/nar/gkn838> and Vgenerepertoire from publication DN Olivieri (2014) <doi:10.1007/s00251-014-0784-3>.
Deploy, execute, and analyze the results of models hosted on the ValidMind platform <https://validmind.com>. This package interfaces with the Python client library in order to allow advanced diagnostics and insight into trained models all from an R environment.
Uses large language models to create poems about R packages. Currently contains the roses() function to make "roses are red, ..." style poems and the prompt() function to only assemble the prompt without submitting it to the model.
This package provides a shiny app for accurate estimation of vaccine induced immunogenicity with bivariate linear modeling. Method is detailed in: Lhomme, Hejblum, Lacabaratz, Wiedemann, Lelievre, Levy, Thiebaut & Richert (2020). Journal of Immunological Methods, 477:112711. <doi:10.1016/j.jim.2019.112711>.
Visualize Variance is an intuitive shiny applications tailored for agricultural research data analysis, including one-way and two-way analysis of variance, correlation, and other essential statistical tools. Users can easily upload their datasets, perform analyses, and download the results as a well-formatted document, streamlining the process of data analysis and reporting in agricultural research.The experimental design methods are based on classical work by Fisher (1925) and Scheffe (1959). The correlation visualization approaches follow methods developed by Wei & Simko (2021) and Friendly (2002) <doi:10.1198/000313002533>.
This package provides R functions to draw lines and curves with the width of the curve allowed to vary along the length of the curve.
Comparison of variance - covariance patterns using relative principal component analysis (relative eigenanalysis), as described in Le Maitre and Mitteroecker (2019) <doi:10.1111/2041-210X.13253>. Also provides functions to compute group covariance matrices, distance matrices, and perform proportionality tests. A worked sample on the body shape of cichlid fishes is included, based on the dataset from Kerschbaumer et al. (2013) <doi:10.5061/dryad.fc02f>.