Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Estimating the disparity between two groups based on the extended model of the Peters-Belson (PB) method. Our model is the first work on the longitudinal data, and also can set a varying variable to find the complicated association between other variables and the varying variable. Our work is an extension of the Peters-Belson method which was originally published in Peters (1941)<doi:10.1080/00220671.1941.10881036> and Belson (1956)<doi:10.2307/2985420>.
Estimates joint marker (longitudinal) and survival (time-to-event) outcomes using variational approximations. The package supports multivariate markers allowing for correlated error terms and multiple types of survival outcomes which may be left-truncated, right-censored, and recurrent. Time-varying fixed and random covariate effects are supported along with non-proportional hazards.
This package provides a method to visualize pharmacometric analyses which are impacted by covariate effects. Variability-aligned covariate harmonized-effects and time-transformation equivalent ('vachette') facilitates intuitive overlays of data and model predictions, allowing for comprehensive comparison without dilution effects. vachette improves upon previous methods Lommerse et al. (2021) <doi:10.1002/psp4.12679>, enabling its application to all pharmacometric models and enhancing Visual Predictive Checks (VPC) by integrating data into cohesive plots that can highlight model misspecification.
Via Foundry API provides streamlined tools for interacting with and extracting data from structured responses, particularly for use cases involving hierarchical data from Foundry's API. It includes functions to fetch and parse process-level and file-level metadata, allowing users to efficiently query and manipulate nested data structures. Key features include the ability to list all unique process names, retrieve file metadata for specific or all processes, and dynamically load or download files based on their type. With built-in support for handling various file formats (e.g., tabular and non-tabular files) and seamless integration with API through authentication, this package is designed to enhance workflows involving large-scale data management and analysis. Robust error handling and flexible configuration ensure reliable performance across diverse data environments. Please consult the documentation for the API endpoint for your installation.
This package provides a new framework of variable selection, which instead of generating artificial covariates such as permutation importance and knockoffs, creates release rules to examine the affect on the response for each covariate where the conditional distribution of the response variable can be arbitrary and unknown.
An interface to the Valhalla routing engineâ s application programming interfaces (APIs) for turn-by-turn routing, isochrones, and origin-destination analyses. Also includes several user-friendly functions for plotting outputs, and strives to follow "tidy" design principles. Please note that this package requires access to a running instance of Valhalla', which is open source and can be downloaded from <https://github.com/valhalla/valhalla>.
RcppArmadillo implementation for the Matlab code of the Variational Mode Decomposition and Two-Dimensional Variational Mode Decomposition'. For more information, see (i) Variational Mode Decomposition by K. Dragomiretskiy and D. Zosso in IEEE Transactions on Signal Processing, vol. 62, no. 3, pp. 531-544, Feb.1, 2014, <doi:10.1109/TSP.2013.2288675>; (ii) Two-Dimensional Variational Mode Decomposition by Dragomiretskiy, K., Zosso, D. (2015), In: Tai, XC., Bae, E., Chan, T.F., Lysaker, M. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2015. Lecture Notes in Computer Science, vol 8932. Springer, <doi:10.1007/978-3-319-14612-6_15>.
Implementation of Azure DevOps <https://azure.microsoft.com/> API calls. It enables the extraction of information about repositories, build and release definitions and individual releases. It also helps create repositories and work items within a project without logging into Azure DevOps'. There is the ability to use any API service with a shell for any non-predefined call.
This package provides tools for the statistical analysis of regular vine copula models, see Aas et al. (2009) <doi:10.1016/j.insmatheco.2007.02.001> and Dissman et al. (2013) <doi:10.1016/j.csda.2012.08.010>. The package includes tools for parameter estimation, model selection, simulation, goodness-of-fit tests, and visualization. Tools for estimation, selection and exploratory data analysis of bivariate copula models are also provided.
Analyze Peptide Array Data and characterize peptide sequence space. Allows for high level visualization of global signal, Quality control based on replicate correlation and/or relative Kd, calculation of peptide Length/Charge/Kd parameters, Hits selection based on RFU Signal, and amino acid composition/basic motif recognition with RFU signal weighting. Basic signal trends can be used to generate peptides that follow the observed compositional trends.
This package provides a set of visual input controls for Shiny apps to facilitate filtering across multiple outputs.
This package provides a toolset for interactively exploring the differences between two data frames.
An implementation of methods related to sparse clustering and variable importance in clustering. The package currently allows to perform sparse k-means clustering with a group penalty, so that it automatically selects groups of numerical features. It also allows to perform sparse clustering and variable selection on mixed data (categorical and numerical features), by preprocessing each categorical feature as a group of numerical features. Several methods for visualizing and exploring the results are also provided. M. Chavent, J. Lacaille, A. Mourer and M. Olteanu (2020)<https://www.esann.org/sites/default/files/proceedings/2020/ES2020-103.pdf>.
This package provides the vcd2df function, which loads a IEEE 1364-1995/2001 VCD (.vcd) file, specified as a parameter of type string containing exactly a file path, and returns an R dataframe containing values over time. A VCD file captures the register values at discrete timepoints from a simulated trace of execution of a hardware design in Verilog or VHDL. The returned dataframe contains a row for each register, by name, and a column for each time point, specified VCD-style using octothorpe-prefixed multiples of the timescale as strings. The only non-trivial implementation details are that (1) VCD x and z non-numerical values are encoded as negative value -1 (as otherwise all bit values are positive) and (2) registers with repeated names in distinct modules are ignored, rather than duplicated, as we anticipate these registers to have the same values. Read more in arXiv preprint: vcd2df -- Leveraging Data Science Insights for Hardware Security Research <doi:10.48550/arXiv.2505.06470>.
Mainly data sets to accompany the VGAM package and the book "Vector Generalized Linear and Additive Models: With an Implementation in R" (Yee, 2015) <DOI:10.1007/978-1-4939-2818-7>. These are used to illustrate vector generalized linear and additive models (VGLMs/VGAMs), and associated models (Reduced-Rank VGLMs, Quadratic RR-VGLMs, Row-Column Interaction Models, and constrained and unconstrained ordination models in ecology). This package now contains some old VGAM family functions which have been replaced by newer ones (often because they are now special cases).
Visualize and compute percentiles/probabilities of normal, t, f, chi square and binomial distributions.
Process complex impedance sensing datasets, including those generated by ECIS, xCELLigence and cellZscope instruments. Data can be imported to a standardised tidy format and then plotted. Support for conducting and plotting the outputs of ANOVA (with appropriate tests of statistical assumptions) and cross-correlation analysis. For data processed using this package see Hucklesby et al. (2020) <doi:10.3390/bios11050159>.
This package provides a lexicon and rule-based sentiment analysis tool that is specifically attuned to sentiments expressed in social media, and works well on texts from other domains. Hutto & Gilbert (2014) <https://www.aaai.org/ocs/index.php/ICWSM/ICWSM14/paper/view/8109/8122>.
This package provides a set of functions for generating HTML to embed hosted video in your R Markdown documents or Shiny applications.
Implementation of the variable banding procedure for modeling local dependence and estimating precision matrices that is introduced in Yu & Bien (2016) and is available at <https://arxiv.org/abs/1604.07451>.
Offers a comprehensive set of assertion tests to help users validate the integrity of their data. These tests can be used to check for specific conditions or properties within a dataset and help ensure that data is accurate and reliable. The package is designed to make it easy to add quality control checks to data analysis workflows and to aid in identifying and correcting any errors or inconsistencies in data.
Generate Venn diagrams from two or three sets, displaying the overlapping items as lists in the appropriate sections. The lists can be split into columns or shortened for large sets and the plot is generated using ggplot2 allowing further customisations.
Position adjustments for ggplot2 to implement "visualize as you randomize" principles, which can be especially useful when plotting experimental data.
Collection of functions to evaluate presence-absence models. It comprises functions to adjust discrimination statistics for the representativeness effect through case-weighting, along with functions for visualizing the outcomes. Originally outlined in: Jiménez-Valverde (2022) The uniform AUC: dealing with the representativeness effect in presence-absence models. Methods Ecol. Evol, 13, 1224-1236.