Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Easily override the default visual choices in ggplot2 to make your time series plots look more like the Wall Street Journal. Specific theme design choices include omitting x-axis grid lines and displaying sparse light grey y-axis grid lines. Additionally, this allows to label the y-axis scales with your units only displayed on the top-most number, while also removing the bottom most number (unless specifically overridden). The goal is visual simplicity, because who has time to waste looking at a cluttered graph?
This package provides methods for estimating profit, profit-maximizing price, demand and consumer surplus of Word-of-Mouth-campaigns on mean-field networks.
Analysing convergent evolution using the Wheatsheaf index, described in Arbuckle et al. (2014) <doi: 10.1111/2041-210X.12195>, and some other unrelated but perhaps useful functions.
Entropy weighted k-means (ewkm) by Liping Jing, Michael K. Ng and Joshua Zhexue Huang (2007) <doi:10.1109/TKDE.2007.1048> is a weighted subspace clustering algorithm that is well suited to very high dimensional data. Weights are calculated as the importance of a variable with regard to cluster membership. The two-level variable weighting clustering algorithm tw-k-means (twkm) by Xiaojun Chen, Xiaofei Xu, Joshua Zhexue Huang and Yunming Ye (2013) <doi:10.1109/TKDE.2011.262> introduces two types of weights, the weights on individual variables and the weights on variable groups, and they are calculated during the clustering process. The feature group weighted k-means (fgkm) by Xiaojun Chen, Yunminng Ye, Xiaofei Xu and Joshua Zhexue Huang (2012) <doi:10.1016/j.patcog.2011.06.004> extends this concept by grouping features and weighting the group in addition to weighting individual features.
Life data analysis in the graphical tradition of Waloddi Weibull. Methods derived from Robert B. Abernethy (2008, ISBN 0-965306-3-2), Wayne Nelson (1982, ISBN: 9780471094586), William Q. Meeker and Lois A. Escobar (1998, ISBN: 1-471-14328-6), John I. McCool, (2012, ISBN: 9781118217986).
Generate wordsearch and crossword puzzles using custom lists of words (and clues). Make them easy or hard, and print them to solve offline with paper and pencil!
This package performs an analysis of time-to-event clinical trial data using various "win time" methods, including ewt', ewtr', rmt', ewtp', rewtp', ewtpr', rewtpr', max', wtr', rwtr', pwt', and rpwt'. These methods are used to calculate and compare treatment effects on ordered composite endpoints. The package handles event times, event indicators, and treatment arm indicators and supports calculations on observed and resampled data. Detailed explanations of each method and usage examples are provided in "Use of win time for ordered composite endpoints in clinical trials," by Troendle et al. (2024)<https://pubmed.ncbi.nlm.nih.gov/38417455/>. For more information, see the package documentation or the vignette titled "Introduction to wintime.".
Makes research involving EMDAT and related datasets easier. These Datasets are manually filled and have several formatting and compatibility issues. Weed aims to resolve these with its functions.
The BACON algorithms are methods for multivariate outlier nomination (detection) and robust linear regression by Billor, Hadi, and Velleman (2000) <doi:10.1016/S0167-9473(99)00101-2>. The extension to weighted problems is due to Beguin and Hulliger (2008) <https://www150.statcan.gc.ca/n1/en/catalogue/12-001-X200800110616>; see also <doi:10.21105/joss.03238>.
Predicts individual race/ethnicity using surname, first name, middle name, geolocation, and other attributes, such as gender and age. The method utilizes Bayes Rule (with optional measurement error correction) to compute the posterior probability of each racial category for any given individual. The package implements methods described in Imai and Khanna (2016) "Improving Ecological Inference by Predicting Individual Ethnicity from Voter Registration Records" Political Analysis <DOI:10.1093/pan/mpw001> and Imai, Olivella, and Rosenman (2022) "Addressing census data problems in race imputation via fully Bayesian Improved Surname Geocoding and name supplements" <DOI:10.1126/sciadv.adc9824>. The package also incorporates the data described in Rosenman, Olivella, and Imai (2023) "Race and ethnicity data for first, middle, and surnames" <DOI:10.1038/s41597-023-02202-2>.
An implementation of the Weighted Portmanteau Tests described in "New Weighted Portmanteau Statistics for Time Series Goodness-of-Fit Testing" published by the Journal of the American Statistical Association, Volume 107, Issue 498, pages 777-787, 2012.
Applies the item weighting method from Kilic & Dogan (2019) <doi:10.21031/epod.516057>. To improve construct validity, this method re-computes scores by utilizing the item discrimination index in conjunction with a condition established upon person ability and item difficulty.
Perform the calculation of W-test, diagnostic checking, calculate minor allele frequency (MAF) and odds ratio.
Power calculator for the two-sample Wilcoxon-Mann-Whitney rank-sum test for a continuous outcome (Mollan, Trumble, Reifeis et. al., Mar. 2020) <doi:10.1080/10543406.2020.1730866> <arXiv:1901.04597>, (Mann and Whitney 1947) <doi:10.1214/aoms/1177730491>, (Shieh, Jan, and Randles 2006) <doi:10.1080/10485250500473099>.
This package provides a fast visualization tool for creating wordcloud by using wordcloud2.js'. wordcloud2.js is a JavaScript library to create wordle presentation on 2D canvas or HTML <https://timdream.org/wordcloud2.js/>.
The main aim of this package is to combine the advantage of wavelet and support vector machine models for time series forecasting. This package also gives the accuracy measurements in terms of RMSE and MAPE. This package fits the hybrid Wavelet SVR model for time series forecasting The main aim of this package is to combine the advantage of wavelet and Support Vector Regression (SVR) models for time series forecasting. This package also gives the accuracy measurements in terms of Root Mean Square Error (RMSE) and Mean Absolute Prediction Error (MAPE). This package is based on the algorithm of Raimundo and Okamoto (2018) <DOI: 10.1109/INFOCT.2018.8356851>.
Data from the United Nation's World Population Prospects 2010.
This package provides functions for determining the effect of data weights on the variance of survey data: users will load a data set which has a weights column, and the package will calculate the design effect (DEFF), weighting loss, root design effect (DEFT), effective sample size (ESS), and/or weighted margin of error.
Assortativity coefficients, centrality measures, and clustering coefficients for weighted and directed networks. Rewiring unweighted networks with given assortativity coefficients. Generating general preferential attachment networks.
Conducts a goodness-of-fit test for the Weibull distribution (referred to as the weibullness test) and furnishes parameter estimations for both the two-parameter and three-parameter Weibull distributions. Notably, the threshold parameter is derived through correlation from the Weibull plot. Additionally, this package conducts goodness-of-fit assessments for the exponential, Gumbel, and inverse Weibull distributions, accompanied by parameter estimations. For more details, see Park (2017) <doi:10.23055/ijietap.2017.24.4.2848>, Park (2018) <doi:10.1155/2018/6056975>, and Park (2023) <doi:10.3390/math11143156>. This work was supported by the National Research Foundation of Korea (NRF) grants funded by the Korea government (MSIT) (No. 2022R1A2C1091319, RS-2023-00242528).
This package provides a collection of tools to fit and work with trophic Species Distribution Models. Trophic Species Distribution Models combine knowledge of trophic interactions with Bayesian structural equation models that model each species as a function of its prey (or predators) and environmental conditions. It exploits the topological ordering of the known trophic interaction network to predict species distribution in space and/or time, where the prey (or predator) distribution is unavailable. The method implemented by the package is described in Poggiato, Andréoletti, Pollock and Thuiller (2022) <doi:10.22541/au.166853394.45823739/v1>.
Analyzes and models data subject to sampling biases. Provides functions to estimate the density and cumulative distribution functions from biased samples of continuous distributions. Includes the estimators proposed by Bhattacharyya et al. (1988) <doi:10.1080/03610928808829825> and Jones (1991) <doi:10.2307/2337020> for density, and by Cox (2005, ISBN:052184939X) and Bose and Dutta (2022) <doi:10.1007/s00184-021-00824-3> for distribution, with different bandwidth selectors. Also includes a real length-biased dataset on shrub width from Muttlak (1988) <https://www.proquest.com/openview/3dd74592e623cdbcfa6176e85bd3d390/1?cbl=18750&diss=y&pq-origsite=gscholar>.
The wavelet-based variance transformation method is used for system modelling and prediction. It refines predictor spectral representation using Wavelet Theory, which leads to improved model specifications and prediction accuracy. Details of methodologies used in the package can be found in Jiang, Z., Sharma, A., & Johnson, F. (2020) <doi:10.1029/2019WR026962>, Jiang, Z., Rashid, M. M., Johnson, F., & Sharma, A. (2020) <doi:10.1016/j.envsoft.2020.104907>, and Jiang, Z., Sharma, A., & Johnson, F. (2021) <doi:10.1016/J.JHYDROL.2021.126816>.
This package provides a powerful yet simple graphical tool available in the field of psychometrics is the Wright Map (also known as item maps or item-person maps), which presents the location of both respondents and items on the same scale. Wright Maps are commonly used to present the results of dichotomous or polytomous item response models. The WrightMap package provides functions to create these plots from item parameters and person estimates stored as R objects. Although the package can be used in conjunction with any software used to estimate the IRT model (e.g. TAM', mirt', eRm or IRToys in R', or Stata', Mplus', etc.), WrightMap features special integration with ConQuest to facilitate reading and plotting its output directly.The wrightMap function creates Wright Maps based on person estimates and item parameters produced by an item response analysis. The CQmodel function reads output files created using ConQuest software and creates a set of data frames for easy data manipulation, bundled in a CQmodel object. The wrightMap function can take a CQmodel object as input or it can be used to create Wright Maps directly from data frames of person and item parameters.