Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Formal implementation of White test of heteroskedasticity and a bootstrapped version of it, developed under the methodology of Jeong, J., Lee, K. (1999) <https://yonsei.pure.elsevier.com/en/publications/bootstrapped-whites-test-for-heteroskedasticity-in-regression-mod>.
For a given Sentence-Aligned Parallel Corpus, it aligns words for each sentence pair. It considers one-to-many and symmetrization alignments. Moreover, it evaluates the quality of word alignment based on this package and some other software. It also builds an automatic dictionary of two languages based on given parallel corpus.
This package provides a multi-visit clinical trial may collect participant responses on an ordinal scale and may utilize a stratified design, such as randomization within centers, to assess treatment efficacy across multiple visits. Baseline characteristics may be strongly associated with the outcome, and adjustment for them can improve power. The win ratio (ignores ties) and the win odds (accounts for ties) can be useful when analyzing these types of data from randomized controlled trials. This package provides straightforward functions for adjustment of the win ratio and win odds for stratification and baseline covariates, facilitating the comparison of test and control treatments in multi-visit clinical trials. For additional information concerning the methodologies and applied examples within this package, please refer to the following publications: 1. Weideman, A.M.K., Kowalewski, E.K., & Koch, G.G. (2024). â Randomization-based covariance adjustment of win ratios and win odds for randomized multi-visit studies with ordinal outcomes.â Journal of Statistical Research, 58(1), 33â 48. <doi:10.3329/jsr.v58i1.75411>. 2. Kowalewski, E.K., Weideman, A.M.K., & Koch, G.G. (2023). â SAS macro for randomization-based methods for covariance and stratified adjustment of win ratios and win odds for ordinal outcomes.â SESUG 2023 Proceedings, Paper 139-2023.
This package provides a hierarchy of classes and methods for manipulating matrices formed implicitly from the sums of the inverses of other matrices, a situation commonly encountered in spatial statistics and related fields. Enables easy use of the Woodbury matrix identity and the matrix determinant lemma to allow computation (e.g., solving linear systems) without having to form the actual matrix. More information on the underlying linear algebra can be found in Harville, D. A. (1997) <doi:10.1007/b98818>.
Search and download data from over 40 databases hosted by the World Bank, including the World Development Indicators ('WDI'), International Debt Statistics, Doing Business, Human Capital Index, and Sub-national Poverty indicators.
Query Wikidata and get facts from current and historic Wikipedia main pages.
This package provides a computationally efficient way of fitting weighted linear fixed effects estimators for causal inference with various weighting schemes. Weighted linear fixed effects estimators can be used to estimate the average treatment effects under different identification strategies. This includes stratified randomized experiments, matching and stratification for observational studies, first differencing, and difference-in-differences. The package implements methods described in Imai and Kim (2017) "When should We Use Linear Fixed Effects Regression Models for Causal Inference with Longitudinal Data?", available at <https://imai.fas.harvard.edu/research/FEmatch.html>.
List of english scrabble words as listed in the OTCWL2014 <https://www.scrabbleplayers.org/w/Official_Tournament_and_Club_Word_List_2014_Edition>. Words are collated from the Word Game Dictionary <https://www.wordgamedictionary.com/word-lists/>.
This package provides efficient implementation of the Wild Binary Segmentation and Binary Segmentation algorithms for estimation of the number and locations of multiple change-points in the piecewise constant function plus Gaussian noise model.
This package provides functions to import data from more than 30,000 surface meteorological sites around the world managed by the National Oceanic and Atmospheric Administration (NOAA) Integrated Surface Database (ISD, see <https://www.ncei.noaa.gov/products/land-based-station/integrated-surface-database>).
Computes the Weighted Topological Overlap with positive and negative signs (wTO) networks given a data frame containing the mRNA count/ expression/ abundance per sample, and a vector containing the interested nodes of interaction (a subset of the elements of the full data frame). It also computes the cut-off threshold or p-value based on the individuals bootstrap or the values reshuffle per individual. It also allows the construction of a consensus network, based on multiple wTO networks. The package includes a visualization tool for the networks. More about the methodology can be found at <doi:10.1186/s12859-018-2351-7>.
Wavelet decomposition method is very useful for modelling noisy time series data. Wavelet decomposition using haar algorithm has been implemented to developed hybrid Wavelet GBM (Gradient Boosting Method) model for time series forecasting using algorithm by Anjoy and Paul (2017) <DOI:10.1007/s00521-017-3289-9>.
This package provides a utility for working with women's basketball data. A scraping and aggregating interface for the WNBA Stats API <https://stats.wnba.com/> and ESPN's <https://www.espn.com> women's college basketball and WNBA statistics. It provides users with the capability to access the game play-by-plays, box scores, standings and results to analyze the data for themselves.
This package provides functions for computing moments and coefficients related to the Beta-Wishart and Inverse Beta-Wishart distributions. It includes functions for calculating the expectation of matrix-valued functions of the Beta-Wishart distribution, coefficient matrices C_k and H_k, expectation of matrix-valued functions of the inverse Beta-Wishart distribution, and coefficient matrices \tildeC_k and \tildeH_k. For more details, refer Hillier and Kan (2024) <https://www-2.rotman.utoronto.ca/~kan/papers/wishmom.pdf>, "On the Expectations of Equivariant Matrix-valued Functions of Wishart and Inverse Wishart Matrices".
Displays geospatial data on an interactive 3D globe in the web browser.
This package provides functions for easily creating interactive web pages using R Markdown that students can use in self-guided learning.
This package provides a collection of implementations of classical and novel algorithms for weighted sampling without replacement. Implementations include the algorithm of Efraimidis and Spirakis (2006) <doi:10.1016/j.ipl.2005.11.003> and Wong and Easton (1980) <doi:10.1137/0209009>.
This package provides a user-friendly factor-like interface for converting strings of text into numeric vectors and rectangular data structures.
This package provides a large English words list and tools to find words by patterns. In particular, anagram finder and scrabble word finder.
The Model Disability Survey (MDS) <https://www.who.int/activities/collection-of-data-on-disability> is a World Health Organization (WHO) general population survey instrument to assess the distribution of disability within a country or region, grounded in the International Classification of Functioning, Disability and Health <https://www.who.int/standards/classifications/international-classification-of-functioning-disability-and-health>. This package provides fit-for-purpose functions for calculating and presenting the results from this survey, as used by the WHO. The package primarily provides functions for implementing Rasch Analysis (see Andrich (2011) <doi:10.1586/erp.11.59>) to calculate a metric scale for disability.
Wavelet analysis and reconstruction of time series, cross-wavelets and phase-difference (with filtering options), significance with simulation algorithms.
Shinohara (2014) <doi:10.1016/j.nicl.2014.08.008> introduced WhiteStripe', an intensity-based normalization of T1 and T2 images, where normal appearing white matter performs well, but requires segmentation. This method performs white matter mean and standard deviation estimates on data that has been rigidly-registered to the MNI template and uses histogram-based methods.
Retrieve geographical information for airports using their IATA or ICAO codes.
Helper functions to easily add functionality to functions. The package can assign functions to have an lazy evaluation allowing you to save and update the arguments before and after each function call. You can set a temporary working directory within functions and wrap console messages around other functions.