Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions for calculating the fetch (length of open water distance along given directions) and estimating wave energy from wind and wave monitoring data.
Estimates high-dimensional multivariate normal copula regression models with the weighted composite likelihood estimating equations in Nikoloulopoulos (2023) <doi:10.1016/j.csda.2022.107654>. It provides autoregressive moving average correlation structures and binary, ordinal, Poisson, and negative binomial regressions.
This package provides functions to create factor variables with contrasts based on weighted effect coding, and their interactions. In weighted effect coding the estimates from a first order regression model show the deviations per group from the sample mean. This is especially useful when a researcher has no directional hypotheses and uses a sample from a population in which the number of observation per group is different.
Package to read Empatica E4 data, perform several transformations, perform signal processing and analyses, including batch analyses.
All functions and data sets required for the examples in the book Hyndman (2024) "That's Weird: Anomaly Detection Using R" <https://OTexts.com/weird/>. All packages needed to run the examples are also loaded.
This package provides a fast and elegant interface for generating XML fragments and documents. It can be used in companion with R packages XML or xml2 to generate XML documents. The fast XML generation is implemented using the Rcpp package.
Compute surrogate explanation groves for predictive machine learning models and analyze complexity vs. explanatory power of an explanation according to Szepannek, G. and von Holt, B. (2023) <doi:10.1007/s41237-023-00205-2>.
Read and write XES Files to create event log objects used by the bupaR framework. XES (Extensible Event Stream) is the `IEEE` standard for storing and sharing event data (see <http://standards.ieee.org/findstds/standard/1849-2016.html> for more info).
The XML-RPC is a remote procedure call protocol based on XML'. The xmlrpc2 package is inspired by the XMLRPC package but uses the curl and xml2 packages instead RCurl and XML'.
This package provides tools to analyze datasets previous to any statistical modeling. Has various functions designed to find inconsistencies and understanding the distribution of the data.
Derivation tree operations are needed for implementing grammar-based genetic programming and grammatical evolution: Generating a random derivation trees of a context-free grammar of bounded depth, decoding a derivation tree, choosing a random node in a derivation tree, extracting a tree whose root is a specified node, and inserting a subtree into a derivation tree at a specified node. These operations are necessary for the initialization and for decoders of a random population of programs, as well as for implementing crossover and mutation operators. Depth-bounds are guaranteed by switching to a grammar without recursive production rules. For executing the examples, the package BNF is needed. The basic tree operations for generating, extracting, and inserting derivation trees as well as the conditions for guaranteeing complete derivation trees have been presented in Geyer-Schulz (1997, ISBN:978-3-7908-0830-X). The use of random integer vectors for the generation of derivation trees has been introduced in Ryan, C., Collins, J. J., and O'Neill, M. (1998) <doi:10.1007/BFb0055930> for grammatical evolution.
The xtdml package implements partially linear panel regression (PLPR) models with high-dimensional confounding variables and an exogenous treatment variable within the double machine learning framework. The package is used to estimate the structural parameter (treatment effect) in static panel data models with fixed effects using the approaches established in Clarke and Polselli (2025) <doi:10.1093/ectj/utaf011>. xtdml is built on the object-oriented package DoubleML (Bach et al., 2024) <doi:10.18637/jss.v108.i03> using the mlr3 ecosystem.
Converts XML documents to R dataframes and dataframes to XML documents. A wide variety of options allows for different XML formats and flexible control of the conversion process. Results can be exported to CSV and Excel, if desired. Also converts XML data to R lists.
The X13-ARIMA-SEATS <https://www.census.gov/data/software/x13as.html> methodology and software is a widely used software and developed by the US Census Bureau. It can be accessed from R with this package and X13-ARIMA-SEATS binaries are provided by the R package x13binary'.
There are two new network metrics, RWC (random walk centrality) and CBET (counting betweenness). Also available are the normalized versions of those metrics. These measures of centrality and betweenness are particularly useful for the analysis of very dense weighted networks which include loops. Traditional measures do not work as well for those network characteristics. The main reference is DePaolis at al (2022) <doi:10.1007/s41109-022-00519-2>.
This package provides a Python interface structured according to the general form described in package XR and in the book "Extending R".
Grammatical evolution (see O'Neil, M. and Ryan, C. (2003,ISBN:1-4020-7444-1)) uses decoders to convert linear (binary or integer genes) into programs. In addition, automatic determination of codon precision with a limited rule choice bias is provided. For a recent survey of grammatical evolution, see Ryan, C., O'Neill, M., and Collins, J. J. (2018) <doi:10.1007/978-3-319-78717-6>.
Provide R functions to read/write/format Excel 2007 and Excel 97/2000/XP/2003 file formats.
An R interface to the OpenPyXL Python library to create native Excel charts and work with Microsoft Excel files.
Reading and writing sheets of a single Excel file into and from a list of data frames. Eases I/O of tabular data in bioinformatics while keeping them in a human readable format.
Converts an XLSForm (survey in Excel') into a well-structured Word document, including sections, skip logic, options, and question labels. Designed to support survey documentation, training materials, and data collection workflows. The package was developed based on field experience with XLSForm and humanitarian operations, aiming to streamline documentation and enhance training efficiency.
Computes robust association measures that do not presuppose linearity. The xi correlation (xicor) is based on cross correlation between ranked increments. The reference for the methods implemented here is Chatterjee, Sourav (2020) <arXiv:1909.10140> This package includes the Galton peas example.
This tool enables in-database scoring of XGBoost models built in R, by translating trained model objects into SQL query. XGBoost <https://github.com/dmlc/xgboost> provides parallel tree boosting (also known as gradient boosting machine, or GBM) algorithms in a highly efficient, flexible and portable way. GBM algorithm is introduced by Friedman (2001) <doi:10.1214/aos/1013203451>, and more details on XGBoost can be found in Chen & Guestrin (2016) <doi:10.1145/2939672.2939785>.
This package provides a toolbox for meta-analysis. This package includes: 1,a robust multivariate meta-analysis of continuous or binary outcomes; 2, a bivariate Egger's test for detecting small study effects; 3, Galaxy Plot: A New Visualization Tool of Bivariate Meta-Analysis Studies; 4, a bivariate T&F method accounting for publication bias in bivariate meta-analysis, based on symmetry of the galaxy plot. Hong C. et al(2020) <doi:10.1093/aje/kwz286>, Chongliang L. et al(2020) <doi:10.1101/2020.07.27.20161562>.