Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Estimate and plot wavelet quantile correlations(Kumar and Padakandla,2022) between two time series. Wavelet quantile correlation is used to capture the dependency between two time series across quantiles and different frequencies. This method is useful in identifying potential hedges and safe-haven instruments for investment purposes. See Kumar and Padakandla(2022) <doi:10.1016/j.frl.2022.102707> for further details.
This package provides functions to convert between weather metrics, including conversions for metrics of temperature, air moisture, wind speed, and precipitation. This package also includes functions to calculate the heat index from air temperature and air moisture.
Evaluation of prediction performance of smaller regions of spectra for Chemometrics. Segmentation of spectra, evolving dimensions regions and sliding windows as selection methods. Election of the best model among those computed based on error metrics. Chen et al.(2017) <doi:10.1007/s00216-017-0218-9>.
Easily override the default visual choices in ggplot2 to make your time series plots look more like the Wall Street Journal. Specific theme design choices include omitting x-axis grid lines and displaying sparse light grey y-axis grid lines. Additionally, this allows to label the y-axis scales with your units only displayed on the top-most number, while also removing the bottom most number (unless specifically overridden). The goal is visual simplicity, because who has time to waste looking at a cluttered graph?
This package provides a collection of functions to perform the Application Programming Interface (API) calls associated with the Walk Score website (www.walkscore.com) within the R environment. These functions can be used to query the Walk Score and Transit Score database for a wide variety of information using R scripts. This package includes the simple Walk Score and Transit Score API calls, which return the scores associated with an input location, as well as calls which return some data used to calculate the scores. These functions are especially useful for mass data collection and gathering Walk Score and Transit Score values for large lists of locations.
Allows to generate on-demand or by batch, any R documentation file, whatever is kind, data, function, class or package. It populates documentation sections, either automatically or by considering your input. Input code could be standard R code or offensive programming code. Documentation content completeness depends on the type of code you use. With offensive programming code, expect generated documentation to be fully completed, from a format and content point of view. With some standard R code, you will have to activate post processing to fill-in any section that requires complements. Produced manual page validity is automatically tested against R documentation compliance rules. Documentation language proficiency, wording style, and phrasal adjustments remains your job.
This is a set of minimization tools (maximum likelihood estimation and least square fitting) to solve examples in the Johan Gabrielsson and Dan Weiner's book "Pharmacokinetic and Pharmacodynamic Data Analysis - Concepts and Applications" 5th ed. (ISBN:9198299107). Examples include linear and nonlinear compartmental model, turn-over model, single or multiple dosing bolus/infusion/oral models, allometry, toxicokinetics, reversible metabolism, in-vitro/in-vivo extrapolation, enterohepatic circulation, metabolite modeling, Emax model, inhibitory model, tolerance model, oscillating response model, enantiomer interaction model, effect compartment model, drug-drug interaction model, receptor occupancy model, and rebound phenomena model.
Data from the United Nation's World Population Prospects 2008.
This package implements the Welch-Satterthwaite approximation for differences of non-standardized t-distributed random variables in both univariate and multivariate settings. The package provides methods for computing effective degrees of freedom and scale parameters, as well as distribution functions for the approximated difference distribution. The methodology extends the classical Welch-Satterthwaite framework from variance combinations to t-distribution differences through careful moment matching. Methods build on the classical Welch-Satterthwaite approach described in Welch (1947) <doi:10.1093/biomet/34.1-2.28> and Satterthwaite (1946) <doi:10.2307/3002019>.
This package provides data from the United Nation's World Population Prospects 2017.
It shows the connections between selected clusters from the latest time point and the clusters from all the previous time points. The transition matrices between time point t and t+1 are obtained from Waddington-OT analysis <https://github.com/ScialdoneLab/WOTPLY>.
This package provides tools for a wavelet-based approach to analyzing spatial synchrony, principally in ecological data. Some tools will be useful for studying community synchrony. See, for instance, Sheppard et al (2016) <doi: 10.1038/NCLIMATE2991>, Sheppard et al (2017) <doi: 10.1051/epjnbp/2017000>, Sheppard et al (2019) <doi: 10.1371/journal.pcbi.1006744>.
This package provides functions to compute Wasserstein barycenters of subset posteriors using the swapping algorithm developed by Puccetti, Rüschendorf and Vanduffel (2020) <doi:10.1016/j.jmaa.2017.02.003>. The Wasserstein barycenter is a geometric approach for combining subset posteriors. It allows for parallel and distributed computation of the posterior in case of complex models and/or big datasets, thereby increasing computational speed tremendously.
This package provides data from the United Nation's World Population Prospects 2015.
This package performs Wilcoxon-Mann-Whitney test in the presence of missing data with controlled Type I error regardless of the values of missing data.
Allows users to create weighted confusion matrices and accuracy metrics that help with the model selection process for classification problems, where distance from the correct category is important. The package includes several weighting schemes which can be parameterized, as well as custom configuration options. Furthermore, users can decide whether they wish to positively or negatively affect the accuracy score as a result of applying weights to the confusion matrix. Functions are included to calculate accuracy metrics for imbalanced data. Finally, wconf integrates well with the caret package, but it can also work standalone when provided data in matrix form. References: Kuhn, M. (2008) "Building Perspective Models in R Using the caret Package" <doi:10.18637/jss.v028.i05> Monahov, A. (2021) "Model Evaluation with Weighted Threshold Optimization (and the mewto R package)" <doi:10.2139/ssrn.3805911> Monahov, A. (2024) "Improved Accuracy Metrics for Classification with Imbalanced Data and Where Distance from the Truth Matters, with the wconf R Package" <doi:10.2139/ssrn.4802336> Starovoitov, V., Golub, Y. (2020). New Function for Estimating Imbalanced Data Classification Results. Pattern Recognition and Image Analysis, 295â 302 Van de Velden, M., Iodice D'Enza, A., Markos, A., Cavicchia, C. (2023) "A general framework for implementing distances for categorical variables" <doi:10.48550/arXiv.2301.02190>.
Non- and semiparametric regression for generalized additive, partial linear, and varying coefficient models as well as their combinations via smoothed backfitting. Based on Roca-Pardinas J and Sperlich S (2010) <doi:10.1007/s11222-009-9130-2>; Mammen E, Linton O and Nielsen J (1999) <doi:10.1214/aos/1017939138>; Lee YK, Mammen E, Park BU (2012) <doi:10.1214/12-AOS1026>.
This package provides a hierarchy of classes and methods for manipulating matrices formed implicitly from the sums of the inverses of other matrices, a situation commonly encountered in spatial statistics and related fields. Enables easy use of the Woodbury matrix identity and the matrix determinant lemma to allow computation (e.g., solving linear systems) without having to form the actual matrix. More information on the underlying linear algebra can be found in Harville, D. A. (1997) <doi:10.1007/b98818>.
Shows the relationship between an independent and dependent variable through Weight of Evidence and Information Value.
This package provides functions for calculating the fetch (length of open water distance along given directions) and estimating wave energy from wind and wave monitoring data.
This package provides a set of functions to implement decision-making systems based on the W.A.S.P.A.S. method (Weighted Aggregated Sum Product Assessment), Chakraborty and Zavadskas (2012) <doi:10.5755/j01.eee.122.6.1810>. So this package offers functions that analyze and validate the raw data, which must be entered in a determined format; extract specific vectors and matrices from this raw database; normalize the input data; calculate rankings by intermediate methods; apply the lambda parameter for the main method; and a function that does everything at once. The package has an example database called choppers, with which the user can see how the input data should be organized so that everything works as recommended by the decision methods based on multiple criteria that this package solves. Basically, the data are composed of a set of alternatives, which will be ranked, a set of choice criteria, a matrix of values for each Alternative-Criterion relationship, a vector of weights associated with the criteria, since certain criteria are considered more important than others, as well as a vector that defines each criterion as cost or benefit, this determines the calculation formula, as there are those criteria that we want the highest possible value (e.g. durability) and others that we want the lowest possible value (e.g. price).
This package provides efficient implementation of the Wild Binary Segmentation and Binary Segmentation algorithms for estimation of the number and locations of multiple change-points in the piecewise constant function plus Gaussian noise model.
Import WIG data into R in long format.
This package provides function, wget_set(), to change the method (default to wget -c') using in download.file(). Using wget -c allowing continued downloading, which is especially useful for slow internet connection and for downloading large files. User can run wget_unset() to restore previous setting.