Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides automated downloading, parsing and formatting of weather data for Australia through API endpoints provided by the Department of Primary Industries and Regional Development (DPIRD) of Western Australia and by the Science and Technology Division of the Queensland Government's Department of Environment and Science (DES). As well as the Bureau of Meteorology (BOM) of the Australian government precis and coastal forecasts, and downloading and importing radar and satellite imagery files. DPIRD weather data are accessed through public APIs provided by DPIRD, <https://www.dpird.wa.gov.au/online-tools/apis/>, providing access to weather station data from the DPIRD weather station network. Australia-wide weather data are based on data from the Australian Bureau of Meteorology (BOM) data and accessed through SILO (Scientific Information for Land Owners) Jeffrey et al. (2001) <doi:10.1016/S1364-8152(01)00008-1>. DPIRD data are made available under a Creative Commons Attribution 3.0 Licence (CC BY 3.0 AU) license <https://creativecommons.org/licenses/by/3.0/au/deed.en>. SILO data are released under a Creative Commons Attribution 4.0 International licence (CC BY 4.0) <https://creativecommons.org/licenses/by/4.0/>. BOM data are (c) Australian Government Bureau of Meteorology and released under a Creative Commons (CC) Attribution 3.0 licence or Public Access Licence (PAL) as appropriate, see <http://www.bom.gov.au/other/copyright.shtml> for further details.
Set of functions that improves the graphical presentations of the functions: wave.correlation and spin.correlation (waveslim package, Whitcher 2012) and the wave.multiple.correlation and wave.multiple.cross.correlation (wavemulcor package, Fernandez-Macho 2012b). The plot outputs (heatmaps) can be displayed in the screen or can be saved as PNG or JPG images or as PDF or EPS formats. The W2CWM2C package also helps to handle the (input data) multivariate time series easily as a list of N elements (times series) and provides a multivariate data set (dataexample) to exemplify its use. A description of the package was published in a scientific paper: Polanco-Martinez and Fernandez-Macho (2014), <doi:10.1109/MCSE.2014.96>.
This package provides a set of functions to implement decision-making systems based on the W.A.S.P.A.S. method (Weighted Aggregated Sum Product Assessment), Chakraborty and Zavadskas (2012) <doi:10.5755/j01.eee.122.6.1810>. So this package offers functions that analyze and validate the raw data, which must be entered in a determined format; extract specific vectors and matrices from this raw database; normalize the input data; calculate rankings by intermediate methods; apply the lambda parameter for the main method; and a function that does everything at once. The package has an example database called choppers, with which the user can see how the input data should be organized so that everything works as recommended by the decision methods based on multiple criteria that this package solves. Basically, the data are composed of a set of alternatives, which will be ranked, a set of choice criteria, a matrix of values for each Alternative-Criterion relationship, a vector of weights associated with the criteria, since certain criteria are considered more important than others, as well as a vector that defines each criterion as cost or benefit, this determines the calculation formula, as there are those criteria that we want the highest possible value (e.g. durability) and others that we want the lowest possible value (e.g. price).
Generate continuous maps of genetic diversity using moving windows with options for rarefaction, interpolation, and masking as described in Bishop et al. (2023) <doi:10.1111/2041-210X.14090>.
Dynamic interaction refers to spatial-temporal associations in the movements of two (or more) animals. This package provides tools for calculating a suite of indices used for quantifying dynamic interaction with wildlife telemetry data. For more information on each of the methods employed see the references within. The package (as of version >= 0.3) also has new tools for automating contact analysis in large tracking datasets. The package (as of version 1.0) uses the move2 class of objects for working with tracking dataset.
Interactive tools for generating random samples. Users select an .xlsx, .csv, or delimited .txt file with population data and are walked through selecting the sample type (Simple Random Sample or Stratified), the number of backups desired, and a "stratify_on" value (if desired). The sample size is determined using a normal approximation to the hypergeometric distribution based on Nicholson (1956) <doi:10.1214/aoms/1177728270>. An .xlsx file is created with the sample and key metadata for reference. It is menu-driven and lets users pick an output directory. See vignettes for a detailed walk-through.
Implementation of the weighted iterative proportional fitting (WIPF) procedure for updating/adjusting a N-dimensional array given a weight structure and some target marginals. Acknowledgements: The author wish to thank Conselleria de Educación, Cultura, Universidades y Empleo (grant CIAICO/2023/031), Ministerio de Ciencia, Innovación y Universidades (grant PID2021-128228NB-I00) and Fundación Mapfre (grant Modelización espacial e intra-anual de la mortalidad en España. Una herramienta automática para el cálculo de productos de vida') for supporting this research.
An implementation of the Weighted Portmanteau Tests described in "New Weighted Portmanteau Statistics for Time Series Goodness-of-Fit Testing" published by the Journal of the American Statistical Association, Volume 107, Issue 498, pages 777-787, 2012.
All functions and data sets required for the examples in the book Hyndman (2026) "That's Weird: Anomaly Detection Using R" <https://OTexts.com/weird/>. All packages needed to run the examples are also loaded.
This package provides a clean syntax for vectorising the use of Non-Standard Evaluation (NSE), for example in ggplot2', dplyr', or data.table'.
This package provides a wrapper around Michel Scheffers's libassp (<https://libassp.sourceforge.net/>). The libassp (Advanced Speech Signal Processor) library aims at providing functionality for handling speech signal files in most common audio formats and for performing analyses common in phonetic science/speech science. This includes the calculation of formants, fundamental frequency, root mean square, auto correlation, a variety of spectral analyses, zero crossing rate, filtering etc. This wrapper provides R with a large subset of libassp's signal processing functions and provides them to the user in a (hopefully) user-friendly manner.
It shows the connections between selected clusters from the latest time point and the clusters from all the previous time points. The transition matrices between time point t and t+1 are obtained from Waddington-OT analysis <https://github.com/ScialdoneLab/WOTPLY>.
The weighted ensemble method is a valuable approach for combining forecasts. This algorithm employs several optimization techniques to generate optimized weights. This package has been developed using algorithm of Armstrong (1989) <doi:10.1016/0024-6301(90)90317-W>.
This package provides a comprehensive suite of functions for processing, analyzing, and visualizing textual data from tweets is offered. Users can clean tweets, analyze their sentiments, visualize data, and examine the correlation between sentiments and environmental data such as weather conditions. Main features include text processing, sentiment analysis, data visualization, correlation analysis, and synthetic data generation. Text processing involves cleaning and preparing tweets by removing textual noise and irrelevant words. Sentiment analysis extracts and accurately analyzes sentiments from tweet texts using advanced algorithms. Data visualization creates various charts like word clouds and sentiment polarity graphs for visual representation of data. Correlation analysis examines and calculates the correlation between tweet sentiments and environmental variables such as weather conditions. Additionally, random tweets can be generated for testing and evaluating the performance of analyses, empowering users to effectively analyze and interpret Twitter data for research and commercial purposes.
Assortativity coefficients, centrality measures, and clustering coefficients for weighted and directed networks. Rewiring unweighted networks with given assortativity coefficients. Generating general preferential attachment networks.
Lets you temporarily execute an expression or a local block with a different here() root in the here package. This is useful for sourcing code in other projects which expect the root directory of here() to be the project directory of those projects. This may be the case with git submodules for example.
This package provides functions to compute Wasserstein barycenters of subset posteriors using the swapping algorithm developed by Puccetti, Rüschendorf and Vanduffel (2020) <doi:10.1016/j.jmaa.2017.02.003>. The Wasserstein barycenter is a geometric approach for combining subset posteriors. It allows for parallel and distributed computation of the posterior in case of complex models and/or big datasets, thereby increasing computational speed tremendously.
Estimates Poole and Rosenthal's (1985 <doi:10.2307/2111172>, 1991 <doi:10.2307/2111445>) W-NOMINATE scores from roll call votes supplied though a rollcall object from the pscl package.
Organizational framework for web development in R including functions to serve static and dynamic content via HTTP methods, includes the html5 package to create HTML pages, and offers other utility functions for common tasks related to web development.
This package provides a collection of functions related to novel methods for estimating R(t), created by the lab of Professor Laura White. Currently implemented methods include two-step Bayesian back-calculation and now-casting for line-list data with missing reporting delays, adapted in STAN from Li (2021) <doi:10.1371/journal.pcbi.1009210>, and calculation of time-varying reproduction number assuming a flux between various adjacent states, adapted into STAN from Zhou (2021) <doi:10.1371/journal.pcbi.1010434>.
This estimates precise weaning ages for a given skeletal population by analyzing the stable nitrogen isotope ratios of them. Bone collagen turnover rates estimated anew and the approximate Bayesian computation (ABC) were adopted in this package.
Generates balancing weights for causal effect estimation in observational studies with binary, multi-category, or continuous point or longitudinal treatments by easing and extending the functionality of several R packages and providing in-house estimation methods. Available methods include those that rely on parametric modeling, optimization, and machine learning. Also allows for assessment of weights and checking of covariate balance by interfacing directly with the cobalt package. Methods for estimating weighted regression models that take into account uncertainty in the estimation of the weights via M-estimation or bootstrapping are available. See the vignette "Installing Supporting Packages" for instructions on how to install any package WeightIt uses, including those that may not be on CRAN.
Weighted descriptive statistics is the discipline of quantitatively describing the main features of real-valued fuzzy data which usually given from a fuzzy population. One can summarize this special kind of fuzzy data numerically or graphically using this package. To interpret some of the properties of one or several sets of real-valued fuzzy data, numerically summarize is possible by some weighted statistics which are designed in this package such as mean, variance, covariance and correlation coefficent. Also, graphically interpretation can be given by weighted histogram and weighted scatter plot using this package to describe properties of real-valued fuzzy data set.
This package provides functions for computing moments and coefficients related to the Beta-Wishart and Inverse Beta-Wishart distributions. It includes functions for calculating the expectation of matrix-valued functions of the Beta-Wishart distribution, coefficient matrices C_k and H_k, expectation of matrix-valued functions of the inverse Beta-Wishart distribution, and coefficient matrices \tildeC_k and \tildeH_k. For more details, refer Hillier and Kan (2024) <https://www-2.rotman.utoronto.ca/~kan/papers/wishmom.pdf>, "On the Expectations of Equivariant Matrix-valued Functions of Wishart and Inverse Wishart Matrices".