Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a collection of user-submitted functions to aid in the analysis of hydrological data, particularly for users in Canada. The functions focus on the use of Canadian data sets, and are suited to Canadian hydrology, such as the important cold region hydrological processes and will work with Canadian hydrological models. The functions are grouped into several themes, currently including Statistical hydrology, Basic data manipulations, Visualization, and Spatial hydrology. Functions developed by the Floodnet project are also included. CSHShydRology has been developed with the assistance of the Canadian Society for Hydrological Sciences (CSHS) which is an affiliated society of the Canadian Water Resources Association (CWRA). As of version 1.2.6, functions now fail gracefully when attempting to download data from a url which is unavailable.
Maps of Comoro Islands. Layers include the country coastline, each island coastline and administrative regions boundaries.
Function using lemmatization to classify educational programs according to the CINE(Classification International Normalized of Education) for Peru.
The cmgnd implements the constrained mixture of generalized normal distributions model, a flexible statistical framework for modelling univariate data exhibiting non-normal features such as skewness, multi-modality, and heavy tails. By imposing constraints on model parameters, the cmgnd reduces estimation complexity while maintaining high descriptive power, offering an efficient solution in the presence of distributional irregularities. For more details see Duttilo and Gattone (2025) <doi:10.1007/s00180-025-01638-x> and Duttilo et al (2025) <doi:10.48550/arXiv.2506.03285>.
This package provides functions to compute and plot Coverage Probability Excursion (CoPE) sets for real valued functions on a 2-dimensional domain. CoPE sets are obtained from repeated noisy observations of the function on the entire domain. They are designed to bound the excursion set of the target function at a given level from above and below with a predefined probability. The target function can be a parameter in spatially-indexed linear regression. Support by NIH grant R01 CA157528 is gratefully acknowledged.
Tests convergence in macro-financial panels combining Dynamic Factor Models (DFM) and mean-reverting Ornstein-Uhlenbeck (OU) processes. Provides: (i) static/approximate DFMs for large panels with VAR/VECM stability checks, Portmanteau tests and rolling out-of-sample R^2, following Stock and Watson (2002) <doi:10.1198/073500102317351921> and the Generalized Dynamic Factor Model of Forni, Hallin, Lippi and Reichlin (2000) <doi:10.1162/003465300559037>; (ii) cointegration analysis à la Johansen (1988) <doi:10.1016/0165-1889(88)90041-3>; (iii) OU-based convergence and half-life summaries grounded in Uhlenbeck and Ornstein (1930) <doi:10.1103/PhysRev.36.823> and Vasicek (1977) <doi:10.1016/0304-405X(77)90016-2>; (iv) robust inference via sandwich HC/HAC estimators (Zeileis (2004) <doi:10.18637/jss.v011.i10>) and regression diagnostics ('lmtest'); and (v) optional PLS-based factor preselection (Mevik and Wehrens (2007) <doi:10.18637/jss.v018.i02>). Functions emphasize reproducibility and clear, publication-ready summaries.
This package provides functions designed to simulate data that conform to basic unidimensional IRT models (for now 3-parameter binary response models and graded response models) along with Post-Hoc CAT simulations of those models given various item selection methods, ability estimation methods, and termination criteria. See Wainer (2000) <doi:10.4324/9781410605931>, van der Linden & Pashley (2010) <doi:10.1007/978-0-387-85461-8_1>, and Eggen (1999) <doi:10.1177/01466219922031365> for more details.
This package implements the multiple changepoint algorithm PELT with a nonparametric cost function based on the empirical distribution of the data. This package extends the changepoint package (see Killick, R and Eckley, I (2014) <doi:10.18637/jss.v058.i03> ).
Decorate functions to make them return enhanced output. The enhanced output consists in an object of type chronicle containing the result of the function applied to its arguments, as well as a log detailing when the function was run, what were its inputs, what were the errors (if the function failed to run) and other useful information. Tools to handle decorated functions are included, such as a forward pipe operator that makes chaining decorated functions possible.
Works with the Citizen Voting Age Population special tabulation from the US Census Bureau <https://www.census.gov/programs-surveys/decennial-census/about/voting-rights/cvap.html>. Provides tools to download and process raw data. Also provides a downloading interface to processed data. Implements a very basic approach to estimate block level citizen voting age population from block group data.
Includes functions to calculate scores and marks for track and field combined events competitions. The functions are based on the scoring tables for combined events set forth by the International Association of Athletics Federation (2001).
Finds a low-dimensional embedding of high-dimensional data, conditioning on available manifold information.
Set of tools to compute metrics and indices for climate analysis. The package provides functions to compute extreme indices, evaluate the agreement between models and combine theses models into an ensemble. Multi-model time series of climate indices can be computed either after averaging the 2-D fields from different models provided they share a common grid or by combining time series computed on the model native grid. Indices can be assigned weights and/or combined to construct new indices. The package makes use of some of the methods described in: N. Manubens et al. (2018) <doi:10.1016/j.envsoft.2018.01.018>.
Imports conversation transcripts into R, concatenates them into a single dataframe appending event identifiers, cleans and formats the text, then yokes user-specified psycholinguistic database values to each word. ConversationAlign then computes alignment indices between two interlocutors across each transcript for >40 possible semantic, lexical, and affective dimensions. In addition to alignment, ConversationAlign also produces a table of analytics (e.g., token count, type-token-ratio) in a summary table describing your particular text corpus.
Extension of cmprsk to Stratified and Clustered data. A goodness of fit test for Fine-Gray model is also provided. Methods are detailed in the following articles: Zhou et al. (2011) <doi:10.1111/j.1541-0420.2010.01493.x>, Zhou et al. (2012) <doi:10.1093/biostatistics/kxr032>, Zhou et al. (2013) <doi: 10.1002/sim.5815>.
This package provides functions to perform the following analyses: i) inferring epistasis from RNAi double knockdown data; ii) identifying gene pairs of multiple mutation patterns; iii) assessing association between gene pairs and survival; and iv) calculating the smallworldness of a graph (e.g., a gene interaction network). Data and analyses are described in Wang, X., Fu, A. Q., McNerney, M. and White, K. P. (2014). Widespread genetic epistasis among breast cancer genes. Nature Communications. 5 4828. <doi:10.1038/ncomms5828>.
Generation of different Christmas cards, most of them being animated. Most of the cards can be generated in three languages (English, Catalan and Spanish). The collection started in 2009.
Set of functions to import COVID-19 pandemic data into R. The Brazilian COVID-19 data, obtained from the official Brazilian repository at <https://covid.saude.gov.br/>, is available at the country, region, state, and city levels. The package also downloads world-level COVID-19 data from Johns Hopkins University's repository. COVID-19 data is available from the start of follow-up until to May 5, 2023, when the World Health Organization (WHO) declared an end to the Public Health Emergency of International Concern (PHEIC) for COVID-19.
Computes the density and probability for the conditional truncated multivariate normal (Horrace (2005) p. 4, <doi:10.1016/j.jmva.2004.10.007>). Also draws random samples from this distribution.
OpenAI's ChatGPT <https://chat.openai.com/> coding assistant for RStudio'. A set of functions and RStudio addins that aim to help the R developer in tedious coding tasks.
CLUster Evaluation (CLUE) is a computational method for identifying optimal number of clusters in a given time-course dataset clustered by cmeans or kmeans algorithms and subsequently identify key kinases or pathways from each cluster. Its implementation in R is called ClueR. See README on <https://github.com/PYangLab/ClueR> for more details. P Yang et al. (2015) <doi:10.1371/journal.pcbi.1004403>.
The CoTiMA package performs meta-analyses of correlation matrices of repeatedly measured variables taken from studies that used different time intervals. Different time intervals between measurement occasions impose problems for meta-analyses because the effects (e.g. cross-lagged effects) cannot be simply aggregated, for example, by means of common fixed or random effects analysis. However, continuous time math, which is applied in CoTiMA', can be used to extrapolate or intrapolate the results from all studies to any desired time lag. By this, effects obtained in studies that used different time intervals can be meta-analyzed. CoTiMA fits models to empirical data using the structural equation model (SEM) package ctsem', the effects specified in a SEM are related to parameters that are not directly included in the model (i.e., continuous time parameters; together, they represent the continuous time structural equation model, CTSEM). Statistical model comparisons and significance tests are then performed on the continuous time parameter estimates. CoTiMA also allows analysis of publication bias (Egger's test, PET-PEESE estimates, zcurve analysis etc.) and analysis of statistical power (post hoc power, required sample sizes). See Dormann, C., Guthier, C., & Cortina, J. M. (2019) <doi:10.1177/1094428119847277>. and Guthier, C., Dormann, C., & Voelkle, M. C. (2020) <doi:10.1037/bul0000304>.
Create and learn Chain Event Graph (CEG) models using a Bayesian framework. It provides us with a Hierarchical Agglomerative algorithm to search the CEG model space. The package also includes several facilities for visualisations of the objects associated with a CEG. The CEG class can represent a range of relational data types, and supports arbitrary vertex, edge and graph attributes. A Chain Event Graph is a tree-based graphical model that provides a powerful graphical interface through which domain experts can easily translate a process into sequences of observed events using plain language. CEGs have been a useful class of graphical model especially to capture context-specific conditional independences. References: Collazo R, Gorgen C, Smith J. Chain Event Graph. CRC Press, ISBN 9781498729604, 2018 (forthcoming); and Barday LM, Collazo RA, Smith JQ, Thwaites PA, Nicholson AE. The Dynamic Chain Event Graph. Electronic Journal of Statistics, 9 (2) 2130-2169 <doi:10.1214/15-EJS1068>.
Significance tests are provided for canonical correlation analysis, including asymptotic tests and a Monte Carlo method.