Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Germline and somatic locus data which contain the total read depth and B allele read depth using Bayesian model (Dirichlet Process) to cluster. Meanwhile, the cluster model can deal with the SNVs mutation and the CNAs mutation.
This package provides simple and efficient methods to detect column-level data drift between reference and target datasets. Designed for monitoring tabular data pipelines and machine learning inputs using statistical distance measures.
Bindings to Google's C++ library Compact Language Detector 2 (see <https://github.com/cld2owners/cld2#readme> for more information). Probabilistically detects over 80 languages in plain text or HTML. For mixed-language input it returns the top three detected languages and their approximate proportion of the total classified text bytes (e.g. 80% English and 20% French out of 1000 bytes). There is also a cld3 package on CRAN which uses a neural network model instead.
Solves for the mean parameters, the variance parameter, and their asymptotic variance in a conditional GEE for recurrent event gap times, as described by Clement and Strawderman (2009) in the journal Biostatistics. Makes a parametric assumption for the length of the censored gap time.
This package contains functions that can determine whether a time series is second-order stationary or not (and hence evidence for locally stationarity). Given two non-stationary series (i.e. locally stationary series) this package can then discover time-varying linear combinations that are second-order stationary. Cardinali, A. and Nason, G.P. (2013) <doi:10.18637/jss.v055.i01>.
Builds the coincident profile proposed by Martinez, W and Nieto, Fabio H and Poncela, P (2016) <doi:10.1016/j.spl.2015.11.008>. This methodology studies the relationship between a couple of time series based on the the set of turning points of each time series. The coincident profile establishes if two time series are coincident, or one of them leads the second.
This package provides ability to control how many times in function calls conditions are thrown (shown to the user). Includes control of warnings and messages.
This package provides functions designed to simulate data that conform to basic unidimensional IRT models (for now 3-parameter binary response models and graded response models) along with Post-Hoc CAT simulations of those models given various item selection methods, ability estimation methods, and termination criteria. See Wainer (2000) <doi:10.4324/9781410605931>, van der Linden & Pashley (2010) <doi:10.1007/978-0-387-85461-8_1>, and Eggen (1999) <doi:10.1177/01466219922031365> for more details.
Estimation of gas transport properties (viscosity, diffusion, thermal conductivity) using Chapman-Enskok theory (Chapman and Larmor 1918, <doi:10.1098/rsta.1918.0005>) and of the second virial coefficient (Vargas et al. 2001, <doi:10.1016/s0378-4371(00)00362-9>) using the Lennard-Jones (12-6) potential. Up to the third order correction is taken into account for viscosity and thermal conductivity. It is also possible to calculate the binary diffusion coefficients of polar and non-polar gases in non-polar bath gases (Brown et al. 2011, <doi:10.1016/j.pecs.2010.12.001>). 16 collision integrals are calculated with four digit accuracy over the reduced temperature range [0.3, 400] using an interpolation function of Kim and Monroe (2014, <doi:10.1016/j.jcp.2014.05.018>).
This package provides tools for extracting word and phrase frequencies from the Child Language Data Exchange System (CHILDES) database via the childesr API. Supports type-level word counts, token-mode searches with simple wildcard patterns and part-of-speech filters, optional stemming, and Zipf-scaled frequencies. Provides normalization per number of tokens or utterances, speaker-role breakdowns, dataset summaries, and export to Excel workbooks for reproducible child language research. The CHILDES database is maintained at <https://talkbank.org/childes/>.
This package provides functions for classical test theory analysis, following methods presented by Wu et al. (2006) <doi:10.1007/978-981-10-3302-5>.
This package provides tools for storing and managing competition results. Competition is understood as a set of games in which players gain some abstract scores. There are two ways for storing results: in long (one row per game-player) and wide (one row per game with fixed amount of players) formats. This package provides functions for creation and conversion between them. Also there are functions for computing their summary and Head-to-Head values for players. They leverage grammar of data manipulation from dplyr'.
Facilitates local polynomial regression for state dependent covariates in state-space models. The functionality can also be used from C++ based model builder tools such as Rcpp'/'inline', TMB', or JAGS'.
Linear or nonlinear cross-lagged panel model can be built from input data. Users can choose the appropriate method from three methods for constructing nonlinear cross lagged models. These three methods include polynomial regression, generalized additive model and generalized linear mixed model.In addition, a function for determining linear relationships is provided. Relevant knowledge of cross lagged models can be learned through the paper by Fredrik Falkenström (2024) <doi:10.1016/j.cpr.2024.102435> and the paper by A Gasparrini (2010) <doi:10.1002/sim.3940>.
This package provides functions for performing quick observations or evaluations of data, including a variety of ways to list objects by size, class, etc. The functions seqle and reverse.seqle mimic the base rle but can search for linear sequences. The function splatnd allows the user to generate zero-argument commands without the need for makeActiveBinding . Functions provided to convert from any base to any other base, and to find the n-th greatest max or n-th least min. In addition, functions which mimic Unix shell commands, including head', tail ,'pushd ,and popd'. Various other goodies included as well.
Helps users standardise data to the Darwin Core Standard, a global data standard to store, document, and share biodiversity data like species occurrence records. The package provides tools to manipulate data to conform with, and check validity against, the Darwin Core Standard. Using corella allows users to verify that their data can be used to build Darwin Core Archives using the galaxias package.
Univariate and multivariate temporal and spatial diversity indices, rank abundance curves, and community stability measures. The functions implement measures that are either explicitly temporal and include the option to calculate them over multiple replicates, or spatial and include the option to calculate them over multiple time points. Functions fall into five categories: static diversity indices, temporal diversity indices, spatial diversity indices, rank abundance curves, and community stability measures. The diversity indices are temporal and spatial analogs to traditional diversity indices. Specifically, the package includes functions to calculate community richness, evenness and diversity at a given point in space and time. In addition, it contains functions to calculate species turnover, mean rank shifts, and lags in community similarity between two time points. Details of the methods are available in Hallett et al. (2016) <doi:10.1111/2041-210X.12569> and Avolio et al. (2019) <doi:10.1002/ecs2.2881>.
This package provides object-oriented database management tools for working with large datasets across multiple database systems. Features include robust connection management for SQL Server and PostgreSQL databases, advanced table operations with bulk data loading and upsert functionality, comprehensive data validation through customizable field type and content validators, efficient index management, and cross-database compatibility. Designed for high-performance data operations in surveillance systems and large-scale data processing workflows.
The estimation of static and dynamic connectedness measures is created in a modular and user-friendly way. Besides, the time domain connectedness approaches, this package further allows to estimate the frequency connectedness approach, the joint spillover index and the extended joint connectedness approach. In addition, all connectedness frameworks can be based upon orthogonalized and generalized VAR, QVAR, LASSO VAR, Ridge VAR, Elastic Net VAR and TVP-VAR models. Furthermore, the package includes the conditional, decomposed and partial connectedness measures as well as the pairwise connectedness index, influence index and corrected total connectedness index. Finally, a battery of datasets are available allowing to replicate a variety of connectedness papers.
Domain mean estimation with monotonicity or block monotone constraints. See Xu X, Meyer MC and Opsomer JD (2021)<doi:10.1016/j.jspi.2021.02.004> for more details.
The primary motivation of this package is to take the things that are great about the R packages flextable <https://davidgohel.github.io/flextable/> and officer <https://davidgohel.github.io/officer/>, take the standard and complex pieces of formatting clinical tables for regulatory use, and simplify the tedious pieces.
Price credit default swaps using C code from the International Swaps and Derivatives Association CDS Standard Model. See <https://www.cdsmodel.com/cdsmodel/documentation.html> for more information about the model and <https://www.cdsmodel.com/cdsmodel/cds-disclaimer.html> for license details for the C code.
It aims to find significant pathways through network topology information. It has several advantages compared with current pathway enrichment tools. First, pathway node instead of single gene is taken as the basic unit when analysing networks to meet the fact that genes must be constructed into complexes to hold normal functions. Second, multiple network centrality measures are applied simultaneously to measure importance of nodes from different aspects to make a full view on the biological system. CePa extends standard pathway enrichment methods, which include both over-representation analysis procedure and gene-set analysis procedure. <doi:10.1093/bioinformatics/btt008>.
This package contains the prepared data that is needed for the shiny application examples in the canvasXpress package. This package also includes datasets used for automated testthat tests. Scotto L, Narayan G, Nandula SV, Arias-Pulido H et al. (2008) <doi:10.1002/gcc.20577>. Davis S, Meltzer PS (2007) <doi:10.1093/bioinformatics/btm254>.