Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The distributions of the weight of evidence (log Bayes factor) favouring case over noncase status in a test dataset (or test folds generated by cross-validation) can be used to quantify the performance of a diagnostic test (McKeigue (2019), <doi:10.1177/0962280218776989>). The package can be used with any test dataset on which you have observed case-control status and have computed prior and posterior probabilities of case status using a model learned on a training dataset. To quantify how the predictor will behave as a risk stratifier, the quantiles of the distributions of weight of evidence in cases and controls can be calculated and plotted.
Analyze given data frame with multiple endpoints and return Kaplan-Meier survival probabilities together with the specified confidence interval. See Nabipoor M, Westerhout CM, Rathwell S, and Bakal JA (2023) <doi:10.1186/s12874-023-01857-0>.
This package provides a set of utility function to prevent the spread of utility scripts in W4M (Workflow4Metabolomics) tools, and centralize them in a single package. To note, some are meant to be replaced by the use of dedicated packages in the future, like the parse_args() function: it is here only to prepare the ground for more global changes in W4M scripts and tools. This package is used by part of the W4M Galaxy modules, some of them being available on the community-maintained GitHub repository for Metabolomics Galaxy tools <https://github.com/workflow4metabolomics/tools-metabolomics>. See Delporte et al (2025) <doi:10.1002/cpz1.70095> for more details.
Calculate the win ratio for prioritized outcomes and the 95% confidence interval based on Bebu and Lachin (2016) <doi:10.1093/biostatistics/kxv032>. Three type of outcomes can be analyzed: survival "failure-time" events, repeated survival "failure-time" events and continuous or ordinal "non-failure time" events that are captured at specific time-points in the study.
Estimation of observation-specific weights for incomplete longitudinal data and bootstrap procedure for weighted quantile regressions. See Jacqmin-Gadda, Rouanet, Mba, Philipps, Dartigues (2020) for details <doi:10.1177/0962280220909986>.
This package provides data to be used by the wordpiece algorithm in order to tokenize text into somewhat meaningful chunks. Included vocabularies were retrieved from <https://huggingface.co/bert-base-cased/resolve/main/vocab.txt> and <https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt> and parsed into an R-friendly format.
Descriptive statistics for large data tend to be low resolution on the tails. Whisker Odds generate a table of descriptive statistics for large data. This is the same as letter-values, but with an alternative naming of depths which allow for depths beyond 26. For a reference to letter-values see Heike Hofmann and Hadley Wickham and Karen Kafadar (2017) <doi:10.1080/10618600.2017.1305277>.
This package provides a conditional independence test that can be applied both to univariate and multivariate random variables. The test is based on a weighted form of the sample covariance of the residuals after a nonlinear regression on the conditioning variables. Details are described in Scheidegger, Hoerrmann and Buehlmann (2022) "The Weighted Generalised Covariance Measure" <http://jmlr.org/papers/v23/21-1328.html>. The test is a generalisation of the Generalised Covariance Measure (GCM) implemented in the R package GeneralisedCovarianceMeasure by Jonas Peters and Rajen D. Shah based on Shah and Peters (2020) "The Hardness of Conditional Independence Testing and the Generalised Covariance Measure" <doi:10.1214/19-AOS1857>.
Download data from individual XKCD comics, written by Randall Munroe <https://xkcd.com/>.
Representation-dependent gene-level operations for genetic and evolutionary algorithms with real-coded genes are collected in this package. The common feature of the gene operations is that all of them are useful for derivation-free optimization algorithms. At the moment the package implements initialization, mutation, crossover, and replication operations for differential evolution as described in Price, Kenneth V., Storn, Rainer M. and Lampinen, Jouni A. (2005) <doi:10.1007/3-540-31306-0>. In addition, several (more recent) methods for determining the scale factor are provided.
This package provides tools to analyze sex differences in omics data for complex diseases. It includes functions for differential expression analysis using the limma method <doi:10.1093/nar/gkv007>, interaction testing between sex and disease, pathway enrichment with clusterProfiler <doi:10.1089/omi.2011.0118>, and gene regulatory network (GRN) construction and analysis using igraph'. The package enables a reproducible workflow from raw data processing to biological interpretation.
Compute surrogate explanation groves for predictive machine learning models and analyze complexity vs. explanatory power of an explanation according to Szepannek, G. and von Holt, B. (2023) <doi:10.1007/s41237-023-00205-2>.
This is a collection of some useful functions when dealing with text data. Currently it only contains a very efficient function of decoding HTML entities in character vectors by Rcpp routine.
This package provides a suite of psychometric analysis tools for research and operation, including: (1) computation of probability, information, and likelihood for the 3PL, GPCM, and GRM; (2) parameter estimation using joint or marginal likelihood estimation method; (3) simulation of computerized adaptive testing using built-in or customized algorithms; (4) assembly and simulation of multistage testing. The full documentation and tutorials are at <https://github.com/xluo11/xxIRT>.
Provide R functions to read/write/format Excel 2007 and Excel 97/2000/XP/2003 file formats.
Diagnostics for non-linear mixed-effects (population) models from NONMEM <https://www.iconplc.com/solutions/technologies/nonmem/>. xpose facilitates data import, creation of numerical run summary and provide ggplot2'-based graphics for data exploration and model diagnostics.
Read and write XES Files to create event log objects used by the bupaR framework. XES (Extensible Event Stream) is the `IEEE` standard for storing and sharing event data (see <http://standards.ieee.org/findstds/standard/1849-2016.html> for more info).
An implementation of the RuleFit algorithm as described in Friedman & Popescu (2008) <doi:10.1214/07-AOAS148>. eXtreme Gradient Boosting ('XGBoost') is used to build rules, and glmnet is used to fit a sparse linear model on the raw and rule features. The result is a model that learns similarly to a tree ensemble, while often offering improved interpretability and achieving improved scoring runtime in live applications. Several algorithms for reducing rule complexity are provided, most notably hyperrectangle de-overlapping. All algorithms scale to several million rows and support sparse representations to handle tens of thousands of dimensions.
Based on STATA xtsum command, it is used to compute summary statistics for a panel data set. It generates overall, between-group, and within-group statistics for specified variables in a panel data set, as presented in S. Porter (2023) <https://stephenporter.org/files/xtsum_handout.pdf>, StataCorp (2023) <https://www.stata.com/manuals/xtxtsum.pdf>.
Calculates a number of valuation adjustments including CVA, DVA, FBA, FCA, MVA and KVA. A two-way margin agreement has been implemented. For the KVA calculation four regulatory frameworks are supported: CEM, (simplified) SA-CCR, OEM and IMM. The probability of default is implied through the credit spreads curve. The package supports an exposure calculation based on SA-CCR which includes several trade types and a simulated path which is currently available only for Interest Rate Swaps. The latest regulatory capital charge methodologies have been implementing including BA-CVA & SA-CVA.
The XKCD color survey asked participants to name colours. Randall Munroe published the top thousand(roughly) names and their sRGB hex values. This package lets you use them.
Datasets and definitions of generic functions used in dependencies of the xergm package.
Support for interfaces from R to other languages, built around a class for evaluators and a combination of functions, classes and methods for communication. Will be used through a specific language interface package. Described in the book "Extending R".
This package contains functions to identify tree-ring borders based on X-ray micro-density profiles and a Graphical User Interface (GUI) to visualize density profiles and correct tree-ring borders. Campelo F, Mayer K, Grabner M. (2019) <doi:10.1016/j.dendro.2018.11.002>.