Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a set of fast tools for converting a textual corpus into a set of normalized tables. Users may make use of the udpipe back end with no external dependencies, or a Python back ends with spaCy <https://spacy.io>. Exposed annotation tasks include tokenization, part of speech tagging, named entity recognition, and dependency parsing.
The Satellite Application Facility on Climate Monitoring (CM SAF) is a ground segment of the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) and one of EUMETSATs Satellite Application Facilities. The CM SAF contributes to the sustainable monitoring of the climate system by providing essential climate variables related to the energy and water cycle of the atmosphere (<https://www.cmsaf.eu>). It is a joint cooperation of eight National Meteorological and Hydrological Services. The cmsafops R-package provides a collection of R-operators for the analysis and manipulation of CM SAF NetCDF formatted data. Other CF conform NetCDF data with time, longitude and latitude dimension should be applicable, but there is no guarantee for an error-free application. CM SAF climate data records are provided for free via (<https://wui.cmsaf.eu/safira>). Detailed information and test data are provided on the CM SAF webpage (<http://www.cmsaf.eu/R_toolbox>).
This package provides a toolkit for querying Team Cymru <http://team-cymru.org> IP address, Autonomous System Number ('ASN'), Border Gateway Protocol ('BGP'), Bogon and Malware Hash Data Services.
We unify various nonparametric hypothesis testing problems in a framework of permutation testing, enabling hypothesis testing on multi-sample, multidimensional data and contingency tables. Most of the functions available in the R environment to implement permutation tests are single functions constructed for specific test problems; to facilitate the use of the package, the package encapsulates similar tests in a categorized manner, greatly improving ease of use. We will all provide functions for self-selected permutation scoring methods and self-selected p-value calculation methods (asymptotic, exact, and sampling). For two-sample tests, we will provide mean tests and estimate drift sizes; we will provide tests on variance; we will provide paired-sample tests; we will provide correlation coefficient tests under three measures. For multi-sample problems, we will provide both ordinary and ordered alternative test problems. For multidimensional data, we will implement multivariate means (including ordered alternatives) and multivariate pairwise tests based on four statistics; the components with significant differences are also calculated. For contingency tables, we will perform permutation chi-square test or ordered alternative.
Various tools for inferring causal models from observational data. The package includes an implementation of the temporal Peter-Clark (TPC) algorithm. Petersen, Osler and Ekstrøm (2021) <doi:10.1093/aje/kwab087>. It also includes general tools for evaluating differences in adjacency matrices, which can be used for evaluating performance of causal discovery procedures.
Implementation of Librino, Levorato, and Zorzi (2014) <doi:10.1002/wcm.2305> algorithm for computation of the intersection areas of an arbitrary number of circles.
Deconvolution of bulk RNA-Sequencing data into proportions of cells based on a reference single-cell RNA-Sequencing dataset using high-dimensional geometric methodology.
This package provides methods and tools for performing multistep-ahead time series forecasting using conformal prediction methods including classical conformal prediction, adaptive conformal prediction, conformal PID (Proportional-Integral-Derivative) control, and autocorrelated multistep-ahead conformal prediction. The methods were described by Wang and Hyndman (2024) <doi:10.48550/arXiv.2410.13115>.
Mines contiguous sequential patterns in text.
Calculate the theoretical value of convertible bonds by given parameters, including B-S theory and Monte Carlo method.
Builds the coincident profile proposed by Martinez, W and Nieto, Fabio H and Poncela, P (2016) <doi:10.1016/j.spl.2015.11.008>. This methodology studies the relationship between a couple of time series based on the the set of turning points of each time series. The coincident profile establishes if two time series are coincident, or one of them leads the second.
This package provides a convenient tool to store and format browser cookies and use them in HTTP requests (for example, through httr2', httr or curl').
This package provides a verity of summary tables of the Covid19 cases in San Francisco. Data source: San Francisco, Department of Public Health - Population Health Division <https://datasf.org/opendata/>.
Generate mean and median weighted or unweighted spatial centers. Functions are analogous to their identically named counterparts within ArcGIS Pro'. Median center methodology based off of Kuhn and Kuenne (1962) <doi:10.1111/j.1467-9787.1962.tb00902.x>.
Enumerate orientation-consistent directed networks from an undirected or partially directed skeleton, detect feedback loops, summarize topology, and simulate node dynamics via stochastic differential equations.
This package provides a candidate correspondence table between two classifications can be created when there are correspondence tables leading from the first classification to the second one via intermediate pivot classifications. The correspondence table between two statistical classifications can be updated when one of the classifications gets updated to a new version.
Merging data from multiple sources is a relevant approach for comprehensively evaluating complex systems. However, the inherent problems encountered when analyzing single tables are amplified with the generation of multi-block datasets, and finding the relationships between data layers of increasing complexity constitutes a challenging task. For that purpose, a generic methodology is proposed by combining the strength of established data analysis strategies, i.e. multi-block approaches and the Orthogonal Partial Least Squares (OPLS) framework to provide an efficient tool for the fusion of data obtained from multiple sources. The package enables quick and efficient implementation of the consensus OPLS model for any horizontal multi-block data structures (observation-based matching). Moreover, it offers an interesting range of metrics and graphics to help to determine the optimal number of components and check the validity of the model through permutation tests. Interpretation tools include score and loading plots, Variable Importance in Projection (VIP), functionality predict for SHAP computing, and performance coefficients such as R2, Q2, and DQ2 coefficients. J. Boccard and D.N. Rutledge (2013) <doi:10.1016/j.aca.2013.01.022>.
Finds the most likely originating tissue(s) and developmental stage(s) of tissue-specific RNA sequencing data. The package identifies both pure transcriptomes and mixtures of transcriptomes. The most likely identity is found through comparisons of the sequencing data with high-throughput in situ hybridisation patterns. Typical uses are the identification of cancer cell origins, validation of cell culture strain identities, validation of single-cell transcriptomes, and validation of identity and purity of flow-sorting and dissection sequencing products.
This package performs the cross-match test that is an exact, distribution free test of equality of 2 high dimensional multivariate distributions. The input is a distance matrix and the labels of the two groups to be compared, the output is the number of cross-matches and a p-value. See Rosenbaum (2005) <doi:10.1111/j.1467-9868.2005.00513.x>.
Generates the calibration simplex (a generalization of the reliability diagram) for three-category probability forecasts, as proposed by Wilks (2013) <doi:10.1175/WAF-D-13-00027.1>.
Copernicus Digital Elevation Model datasets (DEM) of 90 and 30 meters resolution using the awscli command line tool. The Copernicus (DEM) is included in the Registry of Open Data on AWS (Amazon Web Services) and represents the surface of the Earth including buildings, infrastructure and vegetation.
This package provides a method for determining groups in multiple curves with an automatic selection of their number based on k-means or k-medians algorithms. The selection of the optimal number is provided by bootstrap methods or other approaches with lower computational cost. The methodology can be applied both in regression and survival framework. Implemented methods are: Grouping multiple survival curves described by Villanueva et al. (2018) <doi:10.1002/sim.8016>.
This package implements a kernel-based association test for copy number variation (CNV) aggregate analysis in a certain genomic region (e.g., gene set, chromosome, or genome) that is robust to the within-locus and across-locus etiological heterogeneity, and bypass the need to define a "locus" unit for CNVs. Brucker, A., et al. (2020) <doi:10.1101/666875>.
This package provides a set of functions to manage CRAN'-like repositories efficiently.