Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
We present corto (Correlation Tool), a simple package to infer gene regulatory networks and visualize master regulators from gene expression data using DPI (Data Processing Inequality) and bootstrapping to recover edges. An initial step is performed to calculate all significant edges between a list of source nodes (centroids) and target genes. Then all triplets containing two centroids and one target are tested in a DPI step which removes edges. A bootstrapping process then calculates the robustness of the network, eventually re-adding edges previously removed by DPI. The algorithm has been optimized to run outside a computing cluster, using a fast correlation implementation. The package finally provides functions to calculate network enrichment analysis from RNA-Seq and ATAC-Seq signatures as described in the article by Giorgi lab (2020) <doi:10.1093/bioinformatics/btaa223>.
Ceteris Paribus Profiles (What-If Plots) are designed to present model responses around selected points in a feature space. For example around a single prediction for an interesting observation. Plots are designed to work in a model-agnostic fashion, they are working for any predictive Machine Learning model and allow for model comparisons. Ceteris Paribus Plots supplement the Break Down Plots from breakDown package.
In computer experiments space-filling designs are having great impact. Most popularly used space-filling designs are Uniform designs (UDs), Latin hypercube designs (LHDs) etc. For further references one can see Mckay (1979) <DOI:10.1080/00401706.1979.10489755> and Fang (1980) <https://cir.nii.ac.jp/crid/1570291225616774784>. In this package, we have provided algorithms for generate efficient LHDs and UDs. Here, generated LHDs are efficient as they possess lower value of Maxpro measure, Phi_p value and Maximum Absolute Correlation (MAC) value based on the weightage given to each criterion. On the other hand, the produced UDs are having good space-filling property as they always attain the lower bound of Discrete Discrepancy measure. Further, some useful functions added in this package for adding more value to this package.
This package provides a toolbox for developing applications, games, simulations, or agent-based models in the R terminal. Included functions allow users to move the cursor around the terminal screen, change text colors and attributes, clear the screen, hide and show the cursor, map key presses to functions, draw shapes and curves, among others. Most functionalities require users to be in a terminal (not the R GUI).
This package performs Correspondence Analysis on the given dataframe and plots the results in a scatterplot that emphasizes the geometric interpretation aspect of the analysis, following Borg-Groenen (2005) and Yelland (2010). It is particularly useful for highlighting the relationships between a selected row (or column) category and the column (or row) categories. See Borg-Groenen (2005, ISBN:978-0-387-28981-6); Yelland (2010) <doi:10.3888/tmj.12-4>.
Many modern C/C++ development tools in the clang toolchain, such as clang-tidy or clangd', rely on the presence of a compilation database in JSON format <https://clang.llvm.org/docs/JSONCompilationDatabase.html>. This package temporarily injects additional build flags into the R build process to generate such a compilation database.
This package implements a new method ClussCluster descried in Ge Jiang and Jun Li, "Simultaneous Detection of Clusters and Cluster-Specific Genes in High-throughput Transcriptome Data" (Unpublished). Simultaneously perform clustering analysis and signature gene selection on high-dimensional transcriptome data sets. To do so, ClussCluster incorporates a Lasso-type regularization penalty term to the objective function of K- means so that cell-type-specific signature genes can be identified while clustering the cells.
Single objective optimization using a CMA-ES.
Psychometrically analyze latent individual differences related to tasks, interventions, or maturational/aging effects in the context of experimental or longitudinal cognitive research using methods first described by Thomas et al. (2020) <doi:10.1177/0013164420919898>.
Streamlining the clustering and visualization of time-series gene expression data from RNA-Seq experiments, this tool supports fuzzy c-means and k-means clustering algorithms. It is compatible with outputs from widely-used packages such as Seurat', Monocle', and WGCNA', enabling seamless downstream visualization and analysis. See Lokesh Kumar and Matthias E Futschik (2007) <doi:10.6026/97320630002005> for more details.
The ConNEcT approach investigates the pairwise association strength of binary time series by calculating contingency measures and depicts the results in a network. The package includes features to explore and visualize the data. To calculate the pairwise concurrent or temporal sequenced relationship between the variables, the package provides seven contingency measures (proportion of agreement, classical & corrected Jaccard, Cohen's kappa, phi correlation coefficient, odds ratio, and log odds ratio), however, others can easily be implemented. The package also includes non-parametric significance tests, that can be applied to test whether the contingency value quantifying the relationship between the variables is significantly higher than chance level. Most importantly this test accounts for auto-dependence and relative frequency.See Bodner et al.(2021) <doi: 10.1111/bmsp.12222>.Finally, a network can be drawn. Variables depicted the nodes of the network, with the node size adapted to the prevalence. The association strength between the variables defines the undirected (concurrent) or directed (temporal sequenced) links between the nodes. The results of the non-parametric significance test can be included by depicting either all links or only the significant ones. Tutorial see Bodner et al.(2021) <doi:10.3758/s13428-021-01760-w>.
Tool to assessing whether the results of a study could be influenced by collinearity. Simulations under a given hypothesized truth regarding effects of an exposure on the outcome are used and the resulting curves of lagged effects are visualized. A user's manual is provided, which includes detailed examples (e.g. a cohort study looking for windows of vulnerability to air pollution, a time series study examining the linear association of air pollution with hospital admissions, and a time series study examining the non-linear association between temperature and mortality). The methods are described in Basagana and Barrera-Gomez (2021) <doi:10.1093/ije/dyab179>.
Read Condensed Cornell Ecology Program ('CEP') and legacy CANOCO files into R data frames.
This package provides a first-principle, phylogeny-aware comparative genomics tool for investigating associations between terms used to annotate genomic components (e.g., Pfam IDs, Gene Ontology terms,) with quantitative or rank variables such as number of cell types, genome size, or density of specific genomic elements. See the project website for more information, documentation and examples, and <doi:10.1016/j.patter.2023.100728> for the full paper.
Univariate feature selection and compound covariate methods under the Cox model with high-dimensional features (e.g., gene expressions). Available are survival data for non-small-cell lung cancer patients with gene expressions (Chen et al 2007 New Engl J Med) <DOI:10.1056/NEJMoa060096>, statistical methods in Emura et al (2012 PLoS ONE) <DOI:10.1371/journal.pone.0047627>, Emura & Chen (2016 Stat Methods Med Res) <DOI:10.1177/0962280214533378>, and Emura et al (2019)<DOI:10.1016/j.cmpb.2018.10.020>. Algorithms for generating correlated gene expressions are also available. Estimation of survival functions via copula-graphic (CG) estimators is also implemented, which is useful for sensitivity analyses under dependent censoring (Yeh et al 2023 Biomedicines) <DOI:10.3390/biomedicines11030797> and factorial survival analyses (Emura et al 2024 Stat Methods Med Res) <DOI:10.1177/09622802231215805>.
Deal with packages check outputs and reduce the risk of rejection by CRAN by following policies.
Predicts 3 to 12 months prognosis in Chronic Obstructive Pulmonary Disease (COPD) patients hospitalized for severe exacerbations, as described in Almagro et al. (2014) <doi:10.1378/chest.13-1328>.
Continuous glucose monitoring (CGM) systems provide real-time, dynamic glucose information by tracking interstitial glucose values throughout the day. Glycemic variability, also known as glucose variability, is an established risk factor for hypoglycemia (Kovatchev) and has been shown to be a risk factor in diabetes complications. Over 20 metrics of glycemic variability have been identified. Here, we provide functions to calculate glucose summary metrics, glucose variability metrics (as defined in clinical publications), and visualizations to visualize trends in CGM data. Cho P, Bent B, Wittmann A, et al. (2020) <https://diabetes.diabetesjournals.org/content/69/Supplement_1/73-LB.abstract> American Diabetes Association (2020) <https://professional.diabetes.org/diapro/glucose_calc> Kovatchev B (2019) <doi:10.1177/1932296819826111> Kovdeatchev BP (2017) <doi:10.1038/nrendo.2017.3> Tamborlane W V., Beck RW, Bode BW, et al. (2008) <doi:10.1056/NEJMoa0805017> Umpierrez GE, P. Kovatchev B (2018) <doi:10.1016/j.amjms.2018.09.010>.
Automatic specification and estimation of reserve demand curves for central bank operations. The package can help to choose the best demand curve and identify additional explanatory variables. Various plot and predict options are included. For more details, see Chen et al. (2023) <https://www.imf.org/en/Publications/WP/Issues/2023/09/01/Modeling-the-Reserve-Demand-to-Facilitate-Central-Bank-Operations-538754>.
This high-level API client provides open access to cryptocurrency market data, sentiment indicators, and interactive charting tools. The data is sourced from major cryptocurrency exchanges via curl and returned in xts'-format. The data comes in open, high, low, and close (OHLC) format with flexible granularity, ranging from seconds to months. This flexibility makes it ideal for developing and backtesting trading strategies or conducting detailed market analysis.
Fit a CoxSEI (Cox type Self-Exciting Intensity) model to right-censored counting process data.
The concept of cause-deleted life expectancy improvement is statistic designed to quantify the increase in life expectancy if a certain cause of death is removed. See Adamic, P. (2015) (<https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2689352>).
This package provides functions for constructing simultaneous credible bands and identifying subsets via the "credible subsets" (also called "credible subgroups") method. Package documentation includes the vignette included in this package, and the paper by Schnell, Fiecas, and Carlin (2020, <doi:10.18637/jss.v094.i07>).
Wrapper functions to model and extract various quantitative information from absorption spectra of chromophoric dissolved organic matter (CDOM).