Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides tools to measure connection and independence between variables without relying on linear models. Includes functions to compute Eta squared, Chi-squared, and Cramer V. The main advantage of this package is that it works without requiring parametric assumptions. The methods implemented are based on educational material and statistical decomposition techniques, not directly on previously published software or articles.
This package provides functions and Data to support Context Driven Exploratory Projection Pursuit.
Connectome Predictive Modelling (CPM) (Shen et al. (2017) <doi:10.1038/nprot.2016.178>) is a method to predict individual differences in behaviour from brain functional connectivity. cpmr provides a simple yet efficient implementation of this method.
Cure dependent censoring regression models for long-term survival multivariate data. These models are based on extensions of the frailty models, capable to accommodating the cure fraction and the dependence between failure and censoring times, with Weibull and piecewise exponential marginal distributions. Theoretical details regarding the models implemented in the package can be found in Schneider et al. (2022) <doi:10.1007/s10651-022-00549-0>.
Provide standard tables, listings, and graphs (TLGs) libraries used in clinical trials. This package implements a structure to reformat the data with dunlin', create reporting tables using rtables and tern with standardized input arguments to enable quick generation of standard outputs. In addition, it also provides comprehensive data checks and script generation functionality.
This package provides functions for fitting GEV and POT (via point process fitting) models for extremes in climate data, providing return values, return probabilities, and return periods for stationary and nonstationary models. Also provides differences in return values and differences in log return probabilities for contrasts of covariate values. Functions for estimating risk ratios for event attribution analyses, including uncertainty. Under the hood, many of the functions use functions from extRemes', including for fitting the statistical models. Details are given in Paciorek, Stone, and Wehner (2018) <doi:10.1016/j.wace.2018.01.002>.
Non-linear/linear hybrid method for batch-effect correction that uses Mutual Nearest Neighbors (MNNs) to identify similar cells between datasets. Reference: Loza M. et al. (NAR Genomics and Bioinformatics, 2020) <doi:10.1093/nargab/lqac022>.
This package provides a set of tools that can be used across data.frame and imputationList objects.
Allows to plot a number of information related to the interpretation of Correspondence Analysis results. It provides the facility to plot the contribution of rows and columns categories to the principal dimensions, the quality of points display on selected dimensions, the correlation of row and column categories to selected dimensions, etc. It also allows to assess which dimension(s) is important for the data structure interpretation by means of different statistics and tests. The package also offers the facility to plot the permuted distribution of the table total inertia as well as of the inertia accounted for by pairs of selected dimensions. Different facilities are also provided that aim to produce interpretation-oriented scatterplots. Reference: Alberti 2015 <doi:10.1016/j.softx.2015.07.001>.
Set of functions for the easy analyses of conditioning data.
Simplifying the creation of print-ready maps, this package offers a user-friendly interface derived from ggplot2 for handling OpenStreetMap data. It streamlines the map-making process, allowing users to focus on the story their maps tell. Transforming raw geospatial data into informative visualizations is made easy with simple features sf geometries. Whether for urban planning, environmental studies, or impactful public presentations, this tool facilitates straightforward and effective map creation. Enhance the dissemination of spatial information with high-quality, narrative-driven visualizations!
Perform evaluation of automatic subject indexing methods. The main focus of the package is to enable efficient computation of set retrieval and ranked retrieval metrics across multiple dimensions of a dataset, e.g. document strata or subsets of the label set. The package also provides the possibility of computing bootstrap confidence intervals for all major metrics, with seamless integration of parallel computation and propensity scored variants of standard metrics.
This package provides a multiple testing procedure for clustered alternative hypotheses. It is assumed that the p-values under the null hypotheses follow U(0,1) and that the distributions of p-values from the alternative hypotheses are stochastically smaller than U(0,1). By aggregating information, this method is more sensitive to detecting signals of low magnitude than standard methods. Additionally, sporadic small p-values appearing within a null hypotheses sequence are avoided by averaging on the neighboring p-values.
This package provides a basic implementation of the change in mean detection method outlined in: Taylor, Wayne A. (2000) <https://variation.com/wp-content/uploads/change-point-analyzer/change-point-analysis-a-powerful-new-tool-for-detecting-changes.pdf>. The package recursively uses the mean-squared error change point calculation to identify candidate change points. The candidate change points are then re-estimated and Taylor's backwards elimination process is then employed to come up with a final set of change points. Many of the underlying functions are written in C++ for improved performance.
This package provides a set of tools to read, analyze and write lists of click sequences on websites (i.e., clickstream). A click can be represented by a number, character or string. Clickstreams can be modeled as zero- (only computes occurrence probabilities), first- or higher-order Markov chains.
This package implements methods for querying data from CalPASS using its API. CalPASS Plus. MMAP API V1. <https://mmap.calpassplus.org/docs/index.html>.
This package contains the R functions needed to perform Cluster-Of-Clusters Analysis (COCA) and Consensus Clustering (CC). For further details please see Cabassi and Kirk (2020) <doi:10.1093/bioinformatics/btaa593>.
Implementation of Hurst exponent estimators based on complex-valued lifting wavelet energy from Knight, M. I and Nunes, M. A. (2018) <doi:10.1007/s11222-018-9820-8>.
Variable selection for Gaussian model-based clustering as implemented in the mclust package. The methodology allows to find the (locally) optimal subset of variables in a data set that have group/cluster information. A greedy or headlong search can be used, either in a forward-backward or backward-forward direction, with or without sub-sampling at the hierarchical clustering stage for starting mclust models. By default the algorithm uses a sequential search, but parallelisation is also available.
General functions for performing extreme value analysis on a circular domain as part of the statistical methodology in the paper by Konzen, E., Neves, C., and Jonathan, P. (2021). Modeling nonstationary extremes of storm severity: Comparing parametric and semiparametric inference. Environmetrics, 32(4), e2667.
This package provides classes (S4) of circular-linear, symmetric copulas with corresponding methods, extending the copula package. These copulas are especially useful for modeling correlation in discrete-time movement data. Methods for density, (conditional) distribution, random number generation, bivariate dependence measures and fitting parameters using maximum likelihood and other approaches. The package also contains methods for visualizing movement data and copulas.
An interface for creating new condition generators objects. Generators are special functions that can be saved in registries and linked to other functions. Utilities for documenting your generators, and new conditions is provided for package development.
Shiny app for creating interactive consort flow diagrams and other types of flow diagrams, see Moher, Schulz and Altman (2001) <doi:10.1016/S0140-6736(00)04337-3>.
The cito package provides a user-friendly interface for training and interpreting deep neural networks (DNN). cito simplifies the fitting of DNNs by supporting the familiar formula syntax, hyperparameter tuning under cross-validation, and helps to detect and handle convergence problems. DNNs can be trained on CPU, GPU and MacOS GPUs. In addition, cito has many downstream functionalities such as various explainable AI (xAI) metrics (e.g. variable importance, partial dependence plots, accumulated local effect plots, and effect estimates) to interpret trained DNNs. cito optionally provides confidence intervals (and p-values) for all xAI metrics and predictions. At the same time, cito is computationally efficient because it is based on the deep learning framework torch'. The torch package is native to R, so no Python installation or other API is required for this package.