Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Salmonella enterica is a major cause of bacterial food-borne disease worldwide. Serotype identification is the most commonly used typing method to characterize Salmonella isolates. However, experimental serotyping needs great cost on manpower and resources. Recently, we found that the newly incorporated spacer in the clustered regularly interspaced short palindromic repeat (CRISPR) could serve as an effective marker for typing of Salmonella. It was further revealed by Li et. al (2014) <doi:10.1128/JCM.00696-14> that recognized types based on the combination of two newly incorporated spacer in both CRISPR loci showed high accordance with serotypes. Here, we developed an R package CSESA to predict the serotype based on this finding. Considering itâ s time saving and of high accuracy, we recommend to predict the serotypes of unknown Salmonella isolates using CSESA before doing the traditional serotyping.
These functions implement collocation-inference for continuous-time and discrete-time stochastic processes. They provide model-based smoothing, gradient-matching, generalized profiling and forwards prediction error methods.
Provide a series of functions to conduct a meta analysis of factor analysis based on co-occurrence matrices. The tool can be used to solve the factor structure (i.e. inner structure of a construct, or scale) debate in several disciplines, such as psychology, psychiatry, management, education so on. References: Shafer (2005) <doi:10.1037/1040-3590.17.3.324>; Shafer (2006) <doi:10.1002/jclp.20213>; Loeber and Schmaling (1985) <doi:10.1007/BF00910652>.
Measuring child development starts by collecting responses to developmental milestones, such as "able to sit" or "says two words". There are many ways to combine such responses into summaries. The package bundles publicly available datasets with individual milestone data for children aged 0-5 years, with the aim of supporting the construction, evaluation, validation and interpretation of methodologies that aggregate milestone data into informative measures of child development.
This package provides a likelihood-based hypothesis testing approach is implemented for assessing causal mediation. Described in Millstein, Chen, and Breton (2016), <DOI:10.1093/bioinformatics/btw135>, it could be used to test for mediation of a known causal association between a DNA variant, the instrumental variable', and a clinical outcome or phenotype by gene expression or DNA methylation, the potential mediator. Another example would be testing mediation of the effect of a drug on a clinical outcome by the molecular target. The hypothesis test generates a p-value or permutation-based FDR value with confidence intervals to quantify uncertainty in the causal inference. The outcome can be represented by either a continuous or binary variable, the potential mediator is continuous, and the instrumental variable can be continuous or binary and is not limited to a single variable but may be a design matrix representing multiple variables.
This package provides routines for fitting Cox models by likelihood based boosting for single event survival data with right censoring or in the presence of competing risks. The methodology is described in Binder and Schumacher (2008) <doi:10.1186/1471-2105-9-14> and Binder et al. (2009) <doi:10.1093/bioinformatics/btp088>.
Conditional moments test, as proposed by Newey (1985) <doi:10.2307/1911011 > and Tauchen (1985) <doi:10.1016/0304-4076(85)90149-6>, useful to detect specification violations for models estimated by maximum likelihood. Methods for probit and tobit models are provided.
This package provides functions to assess complex heterogeneity in the strength of a surrogate marker with respect to multiple baseline covariates, in either a randomized treatment setting or observational setting. For a randomized treatment setting, the functions assess and test for heterogeneity using both a parametric model and a semiparametric two-step model. More details for the randomized setting are available in: Knowlton, R., Tian, L., & Parast, L. (2025). "A General Framework to Assess Complex Heterogeneity in the Strength of a Surrogate Marker," Statistics in Medicine, 44(5), e70001 <doi:10.1002/sim.70001>. For an observational setting, functions in this package assess complex heterogeneity in the strength of a surrogate marker using meta-learners, with options for different base learners. More details for the observational setting will be available in the future in: Knowlton, R., Parast, L. (2025) "Assessing Surrogate Heterogeneity in Real World Data Using Meta-Learners." A tutorial for this package can be found at <https://www.laylaparast.com/cohetsurr>.
Find the location of the code for an R package based on the package's name or string representation. Checks on CRAN based on information in the URL field or BioConductor and GitHub based on constructing a URL, and verifies all paths via testing for a successful response. This can be useful when automating static code analysis based on a list of package names, and similar tasks.
Provided are Computational methods for Immune Cell-type Subsets, including:(1) DCQ (Digital Cell Quantifier) to infer global dynamic changes in immune cell quantities within a complex tissue; and (2) VoCAL (Variation of Cell-type Abundance Loci) a deconvolution-based method that utilizes transcriptome data to infer the quantities of immune-cell types, and then uses these quantitative traits to uncover the underlying DNA loci.
This package provides a simple way to assess the stability of candidate housekeeping genes is implemented in this package.
Classification method described in Dancik et al (2011) <doi:10.1158/0008-5472.CAN-11-2427> that classifies a sample according to the class with the maximum mean (or any other function of) correlation between the test and training samples with known classes.
This package implements cointegration/co-trending rank selection algorithm in Guo and Shintani (2013) "Consistent co-trending rank selection when both stochastic and nonlinear deterministic trends are present". The Econometrics Journal 16: 473-483 <doi:10.1111/j.1368-423X.2012.00392.x>. Numbered examples correspond to Feb 2011 preprint <http://www.fas.nus.edu.sg/ecs/events/seminar/seminar-papers/05Apr11.pdf>.
Computes maximum response from Cardiac Magnetic Resonance Images using spatial and voxel wise spline based Bayesian model. This is an implementation of the methods described in Schmid (2011) <doi:10.1109/TMI.2011.2109733> "Voxel-Based Adaptive Spatio-Temporal Modelling of Perfusion Cardiovascular MRI". IEEE TMI 30(7) p. 1305 - 1313.
Calculate with spectral properties of light sources, materials, cameras, eyes, and scanners. Build complex systems from simpler parts using a spectral product algebra. For light sources, compute CCT, CRI, SSI, and IES TM-30 reports. For object colors, compute optimal colors and Logvinenko coordinates. Work with the standard CIE illuminants and color matching functions, and read spectra from text files, including CGATS files. Estimate a spectrum from its response. A user guide and 9 vignettes are included.
This package contains all of the functions necessary for the complete analysis of a continuous glucose monitoring study and can be applied to data measured by various existing CGM devices such as FreeStyle Libre', Glutalor', Dexcom and Medtronic CGM'. It reads a series of data files, is able to convert various formats of time stamps, can deal with missing values, calculates both regular statistics and nonlinear statistics, and conducts group comparison. It also displays results in a concise format. Also contains two unique features new to CGM analysis: one is the implementation of strictly standard mean difference and the class of effect size; the other is the development of a new type of plot called antenna plot. It corresponds to Zhang XD'(2018)<doi:10.1093/bioinformatics/btx826>'s article CGManalyzer: an R package for analyzing continuous glucose monitoring studies'.
The implementation of bias-corrected sandwich variance estimators for the analysis of cluster randomized trials with time-to-event outcomes using the marginal Cox model, proposed by Wang et al. (under review).
This package provides tools for sampling from a conditional copula density decomposed via Pair-Copula Constructions as C- or D- vine. Here, the vines which can be used for such a sampling are those which sample as first the conditioning variables (when following the sampling algorithms shown in Aas et al. (2009) <DOI:10.1016/j.insmatheco.2007.02.001>). The used sampling algorithm is presented and discussed in Bevacqua et al. (2017) <DOI:10.5194/hess-2016-652>, and it is a modified version of that from Aas et al. (2009) <DOI:10.1016/j.insmatheco.2007.02.001>. A function is available to select the best vine (based on information criteria) among those which allow for such a conditional sampling. The package includes a function to compare scatterplot matrices and pair-dependencies of two multivariate datasets.
Given a patient-sharing network, calculate either the classic care density as proposed by Pollack et al. (2013) <doi:10.1007/s11606-012-2104-7> or the fragmented care density as proposed by Engels et al. (2024) <doi:10.1186/s12874-023-02106-0>. By utilizing the igraph and data.table packages, the provided functions scale well for very large graphs.
Management and analysis of camera trap wildlife data through an integrated workflow. Provides functions for image/video organization and metadata extraction, species/individual identification. Creates detection histories for occupancy and spatial capture-recapture analyses, with support for multi-season studies. Includes tools for fitting community occupancy models in JAGS and NIMBLE, and an interactive dashboard for survey data visualization and analysis. Features visualization of species distributions and activity patterns, plus export capabilities for GIS and reports. Emphasizes automation and reproducibility while maintaining flexibility for different study designs.
This package provides a unified interface for simplifying cloud storage interactions, including uploading, downloading, reading, and writing files, with functions for both Google Drive (<https://www.google.com/drive/>) and Amazon S3 (<https://aws.amazon.com/s3/>).
Differential analyses and Enrichment pipeline for bulk ATAC-seq data analyses. This package combines different packages to have an ultimate package for both data analyses and visualization of ATAC-seq data. Methods are described in Karakaslar et al. (2021) <doi:10.1101/2021.03.05.434143>.
Threshold regression models are also called two-phase regression, broken-stick regression, split-point regression, structural change models, and regression kink models, with and without interaction terms. Methods for both continuous and discontinuous threshold models are included, but the support for the former is much greater. This package is described in Fong, Huang, Gilbert and Permar (2017) <DOI:10.1186/s12859-017-1863-x> and the package vignette.
Generates a visualization of binary classifier performance as a grid of diagnostic plots with just one function call. Includes ROC curves, prediction density, accuracy, precision, recall and calibration plots, all using ggplot2 for easy modification. Debug your binary classifiers faster and easier!