Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
To optimize clinical trial designs and data analysis methods consistently through trial simulation, we need to simulate multivariate mixed-type virtual patient data independent of designs and analysis methods under evaluation. To make the outcome of optimization more realistic, relevant empirical patient level data should be utilized when itâ s available. However, a few problems arise in simulating trials based on small empirical data, where the underlying marginal distributions and their dependence structure cannot be understood or verified thoroughly due to the limited sample size. To resolve this issue, we use the copula invariance property, which can generate the joint distribution without making a strong parametric assumption. The function copula.sim can generate virtual patient data with optional data validation methods that are based on energy distance and ball divergence measurement. The function compare.copula.sim can conduct comparison of marginal mean and covariance of simulated data. To simulate patient-level data from a hypothetical treatment arm that would perform differently from the observed data, the function new.arm.copula.sim can be used to generate new multivariate data with the same dependence structure of the original data but with a shifted mean vector.
This package provides a minimal interface for applying annotators from the Stanford CoreNLP java library. Methods are provided for tasks such as tokenisation, part of speech tagging, lemmatisation, named entity recognition, coreference detection and sentiment analysis.
Solves system of linear equations using (preconditioned) conjugate gradient algorithm, with improved efficiency using Armadillo templated C++ linear algebra library, and flexibility for user-specified preconditioning method. Please check <https://github.com/styvon/cPCG> for latest updates.
This package provides color palettes based on crayon colors since the early 1900s. Colors are based on various crayon colors, sets, and promotional palettes, most of which can be found at <https://en.wikipedia.org/wiki/List_of_Crayola_crayon_colors>. All palettes are discrete palettes and are not necessarily color-blind friendly. Provides scales for ggplot2 for discrete coloring.
Accuracy metrics are commonly used to assess the discriminating ability of diagnostic tests or biomarkers. Among them, metrics based on the ROC framework are particularly popular. When classification involves subclasses, the package CompClassMetrics includes functions that can provide the point estimate, confidence interval as well as true values if a parametric setting is known. For more details see Nan and Tian (2025) <doi:10.1177/09622802251343600> and Nan and Tian (2023) <doi:10.1002/sim.9908> and Feng and Tian (2020) <doi:10.1177/0962280220938077>.
Routines doing cone projection and quadratic programming, as well as doing estimation and inference for constrained parametric regression and shape-restricted regression problems. See Mary C. Meyer (2013)<doi:10.1080/03610918.2012.659820> for more details.
Implement an interval censor method to break ties when using data with ties to fitting a bivariate copula.
Estimation of changepoints using an "S-curve" approximation. Formation of confidence intervals for changepoint locations and magnitudes. Both abrupt and gradual changes can be modeled.
Interactive shiny application for running classical test theory (item analysis).
An implementation of the Chrome DevTools Protocol', for controlling a headless Chrome web browser.
Automatically displays graphical visualization for exported data table (permutated results) from Connectivity Map (CMap) (2006) <doi:10.1126/science.1132939>. It allows the representation of the statistics (p-value and enrichment) according to each cell lines in the form of a bubble plot.
Execute Nonlinear Mixed Effects (NLME) models for pharmacometrics using a shiny interface. Specify engine parameters and select from different run options, including simple estimation, stepwise covariate search, bootstrapping, simulation, visual predictive check, and more. Models are executed using the Certara.RsNLME package.
This package provides analytical methods for analyzing CRISPR screen data at different levels of gene expression. Multi-component normal mixture models and EM algorithms are used for modeling.
Estimate one or two cutpoints of a metric or ordinal-scaled variable in the multivariable context of survival data or time-to-event data. Visualise the cutpoint estimation process using contour plots, index plots, and spline plots. It is also possible to estimate cutpoints based on the assumption of a U-shaped or inverted U-shaped relationship between the predictor and the hazard ratio. Govindarajulu, U., and Tarpey, T. (2022) <doi:10.1080/02664763.2020.1846690>.
Gene Symbols or Ensembl Gene IDs are converted using the Bimap interface in AnnotationDbi in convertId2() but that function is only provided as fallback mechanism for the most common use cases in data analysis. The main function in the package is convert.bm() which queries BioMart using the full capacity of the API provided through the biomaRt package. Presets and defaults are provided for convenience but all "marts", "filters" and "attributes" can be set by the user. Function convert.alias() converts Gene Symbols to Aliases and vice versa and function likely_symbol() attempts to determine the most likely current Gene Symbol.
This package provides a toolkit for querying Team Cymru <http://team-cymru.org> IP address, Autonomous System Number ('ASN'), Border Gateway Protocol ('BGP'), Bogon and Malware Hash Data Services.
Maximum likelihood estimation in respondent driven samples.
An automated and streamlined workflow for predictive climate mapping using climate station data. Works within an environment the user provides a destined path to - otherwise it's tempdir(). Quick and relatively easy creation of resilient and reproducible climate models, predictions and climate maps, shortening the usually long and complicated work of predictive modelling. For more information, please find the provided URL. Many methods in this package are new, but the main method is based on a workflow from Meyer (2019) <doi:10.1016/j.ecolmodel.2019.108815> and Meyer (2022) <doi:10.1038/s41467-022-29838-9> , however, it was generalized and adjusted in the context of this package.
Combines taxonomic classifications of high-throughput 16S rRNA gene sequences with reference proteomes of archaeal and bacterial taxa to generate amino acid compositions of community reference proteomes. Calculates chemical metrics including carbon oxidation state ('Zc'), stoichiometric oxidation and hydration state ('nO2 and nH2O'), H/C, N/C, O/C, and S/C ratios, grand average of hydropathicity ('GRAVY'), isoelectric point ('pI'), protein length, and average molecular weight of amino acid residues. Uses precomputed reference proteomes for archaea and bacteria derived from the Genome Taxonomy Database ('GTDB'). Also includes reference proteomes derived from the NCBI Reference Sequence ('RefSeq') database and manual mapping from the RDP Classifier training set to RefSeq taxonomy as described by Dick and Tan (2023) <doi:10.1007/s00248-022-01988-9>. Processes taxonomic classifications in RDP Classifier format or OTU tables in phyloseq-class objects from the Bioconductor package phyloseq'.
Calculate the distribution of costs for the installation of an elevator based on the different distribution rules.
Imports PxStat data in JSON-stat format and (optionally) reshapes it into wide format. The Central Statistics Office (CSO) is the national statistical institute of Ireland and PxStat is the CSOs online database of Official Statistics. This database contains current and historical data series compiled from CSO statistical releases and is accessed at <https://data.cso.ie>. The CSO PxStat Application Programming Interface (API), which is accessed in this package, provides access to PxStat data in JSON-stat format at <https://data.cso.ie>. This dissemination tool allows developers machine to machine access to CSO PxStat data.
An implementation of the probability mass function, cumulative density function, quantile function, random number generator, maximum likelihood estimator, and p-value generator from a conditional hypergeometric distribution: the distribution of how many items are in the overlap of all samples when samples of arbitrary size are each taken without replacement from populations of arbitrary size.
Building on top of the RcppArmadillo linear algebra functionalities to do fast spatial interaction models in the context of urban analytics, geography, transport modelling. It uses the Newton root search algorithm to determine the optimal cost exponent and can run country level models with thousands of origins and destinations. It aims at implementing an easy approach based on matrices, that can originate from various routing and processing steps earlier in an workflow. Currently, the simplest form of production, destination and doubly constrained models are implemented. Schlosser et al. (2023) <doi:10.48550/arXiv.2309.02112>.
This package contains the basic functions to apply the unified framework for partitioning the drivers of stability of ecological communities. Segrestin et al. (2024) <doi:10.1111/geb.13828>.