Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a systematic biology tool was developed to identify cell infiltration via Individualized Cell-Cell interaction network. CITMIC first constructed a weighted cell interaction network through integrating Cell-target interaction information, molecular function data from Gene Ontology (GO) database and gene transcriptomic data in specific sample, and then, it used a network propagation algorithm on the network to identify cell infiltration for the sample. Ultimately, cell infiltration in the patient dataset was obtained by normalizing the centrality scores of the cells.
Defines the classes used for "class comparison" problems in the OOMPA project (<http://oompa.r-forge.r-project.org/>). Class comparison includes tests for differential expression; see Simon's book for details on typical problem types.
Implementations of the family of map() functions with frequent saving of the intermediate results. The contained functions let you start the evaluation of the iterations where you stopped (reading the already evaluated ones from cache), and work with the currently evaluated iterations while remaining ones are running in a background job. Parallel computing is also easier with the workers parameter.
In computationally demanding analysis projects, statisticians and data scientists asynchronously deploy long-running tasks to distributed systems, ranging from traditional clusters to cloud services. The crew.aws.batch package extends the mirai'-powered crew package with a worker launcher plugin for AWS Batch. Inspiration also comes from packages mirai by Gao (2023) <https://github.com/r-lib/mirai>, future by Bengtsson (2021) <doi:10.32614/RJ-2021-048>, rrq by FitzJohn and Ashton (2023) <https://github.com/mrc-ide/rrq>, clustermq by Schubert (2019) <doi:10.1093/bioinformatics/btz284>), and batchtools by Lang, Bischl, and Surmann (2017). <doi:10.21105/joss.00135>.
This package provides functions and data files to help CE Public-Use Microdata (PUMD) users calculate annual estimated expenditure means, standard errors, and quantiles according to the methods used by the CE with PUMD. For more information on the CE please visit <https://www.bls.gov/cex>. For further reading on CE estimate calculations please see the CE Calculation section of the U.S. Bureau of Labor Statistics (BLS) Handbook of Methods at <https://www.bls.gov/opub/hom/cex/calculation.htm>. For further information about CE PUMD please visit <https://www.bls.gov/cex/pumd.htm>.
There are many estimators of false discovery rate. In this package we compute the Nonlocal False Discovery Rate (NFDR) and the estimators of local false discovery rate: Corrected False discovery Rate (CFDR), Re-ranked False Discovery rate (RFDR) and the blended estimator. Bickel, D.R., Rahal, A. (2019) <https://tinyurl.com/kkdc9rk8>.
Simulates the composition of samples of vegetation according to gradient-based vegetation theory. Features a flexible algorithm incorporating competition and complex multi-gradient interaction.
Based on individual market shares of all participants in a market or space, the package offers a set of different structural and concentration measures frequently - and not so frequently - used in research and in practice. Measures can be calculated in groups or individually. The calculated measure or the resulting vector in table format should help practitioners make more informed decisions. Methods used in this package are from: 1. Chang, E. J., Guerra, S. M., de Souza Penaloza, R. A. & Tabak, B. M. (2005) "Banking concentration: the Brazilian case". 2. Cobham, A. and A. Summer (2013). "Is It All About the Tails? The Palma Measure of Income Inequality". 3. Garcia Alba Idunate, P. (1994). "Un Indice de dominancia para el analisis de la estructura de los mercados". 4. Ginevicius, R. and S. Cirba (2009). "Additive measurement of market concentration" <doi:10.3846/1611-1699.2009.10.191-198>. 5. Herfindahl, O. C. (1950), "Concentration in the steel industry" (PhD thesis). 6. Hirschmann, A. O. (1945), "National power and structure of foreign trade". 7. Melnik, A., O. Shy, and R. Stenbacka (2008), "Assessing market dominance" <doi:10.1016/j.jebo.2008.03.010>. 8. Palma, J. G. (2006). "Globalizing Inequality: Centrifugal and Centripetal Forces at Work". 9. Shannon, C. E. (1948). "A Mathematical Theory of Communication". 10. Simpson, E. H. (1949). "Measurement of Diversity" <doi:10.1038/163688a0>.
This package provides functions for implementing cmenet - a bi-level variable selection method for conditional main effects (see Mak and Wu (2018) <doi:10.1080/01621459.2018.1448828>). CMEs are reparametrized interaction effects which capture the conditional impact of a factor at a fixed level of another factor. Compared to traditional two-factor interactions, CMEs can quantify more interpretable interaction effects in many problems. The current implementation performs variable selection on only binary CMEs; we are working on an extension for the continuous setting.
Package encapsulates standard expressions for distances, times, luminosities, and other quantities useful in observational cosmology, including molecular line observations. Currently coded for a flat universe only.
Includes binning categorical variables into lesser number of categories based on t-test, converting categorical variables into continuous features using the mean of the response variable for the respective categories, understanding the relationship between the response variable and predictor variables using data transformations.
Calculate the colocalization index, NSInC, in two different ways as described in the paper (Liu et al., 2019. Manuscript submitted for publication.) for multiple-species spatial data which contain the precise locations and membership of each spatial point. The two main functions are nsinc.d() and nsinc.z(). They provide the Pearsonâ s correlation coefficients of signal proportions in different memberships within a concerned proximity of every signal (or every base signal if single direction colocalization is considered) across all (base) signals using two different ways of normalization. The proximity sizes could be an individual value or a range of values, where the default ranges of values are different for the two functions.
Color values in R are often represented as strings of hexadecimal colors or named colors. This package offers fast conversion of these color representations to either an array of red/green/blue/alpha values or to the packed integer format used in native raster objects. Functions for conversion are also exported at the C level for use in other packages. This fast conversion of colors is implemented using an order-preserving minimal perfect hash derived from Majewski et al (1996) "A Family of Perfect Hashing Methods" <doi:10.1093/comjnl/39.6.547>.
The developed function is a comprehensive tool for the analysis of India Meteorological Department (IMD) NetCDF rainfall data. Specifically designed to process high-resolution daily gridded rainfall datasets. It provides four key functions to process IMD NetCDF rainfall data and create rasters for various temporal scales, including annual, seasonal, monthly, and weekly rainfall. For method details see, Malik, A. (2019).<DOI:10.1007/s12517-019-4454-5>. It supports different aggregation methods, such as sum, min, max, mean, and standard deviation. These functions are designed for spatio-temporal analysis of rainfall patterns, trend analysis,geostatistical modeling of rainfall variability, identifying rainfall anomalies and extreme events and can be an input for hydrological and agricultural models.
Correlates of protection (CoP) and correlates of risk (CoR) study the immune biomarkers associated with an infectious disease outcome, e.g. COVID or HIV-1 infection. This package contains shared functions for analyzing CoP and CoR, including bootstrapping procedures, competing risk estimation, and bootstrapping marginalized risks.
Enables DBI compliant packages to integrate with the RStudio connections pane, and the pins package. It automates the display of schemata, tables, views, as well as the preview of the table's top 1000 records.
Calculates permutation tests that can be powerful for comparing two groups with some positive but many zero responses (see Follmann, Fay, and Proschan <DOI:10.1111/j.1541-0420.2008.01131.x>).
An implementation of double generalized linear model (DGLM) building with variable selection procedures and handling of interaction terms and other complex situations. We also provide a method of handling convergence issues within the dglm() function. The package offers a simulation function for generating simulated data for testing purposes and utilizes the forward stepwise variable selection procedure in model-building. It also provides a new custom bootstrap function for mean and standard deviation estimation and functions for building crossplots and squareplots from a data set.
This package implements Markowitz Critical Line Algorithm ('CLA') for classical mean-variance portfolio optimization, see Markowitz (1952) <doi:10.2307/2975974>. Care has been taken for correctness in light of previous buggy implementations.
Datasets used in the book "Categorical Data Analysis" by Agresti (2012, ISBN:978-0-470-46363-5) but not printed in the book. Datasets and help pages were automatically produced from the source <https://users.stat.ufl.edu/~aa/cda/data.html> by the R script foo.R, which can be found in the GitHub repository.
Get insight into a forest of classification trees, by calculating similarities between the trees, and subsequently clustering them. Each cluster is represented by it's most central cluster member. The package implements the methodology described in Sies & Van Mechelen (2020) <doi:10.1007/s00357-019-09350-4>.
Package contains functions for analyzing check-all-that-apply (CATA) data from consumer and sensory tests. Cochran's Q test, McNemar's test, and Penalty-Lift analysis are provided; for details, see Meyners, Castura & Carr (2013) <doi:10.1016/j.foodqual.2013.06.010>. Cluster analysis can be performed using b-cluster analysis, then evaluated using various measures; for details, see Castura, Meyners, Varela & Næs (2022) <doi:10.1016/j.foodqual.2022.104564>. Consumers can also be clustered on their product-related hedonic responses; see Castura, Meyners, Pohjanheimo, Varela & Næs (2023) <doi:10.1111/joss.12860>. Permutation tests based on the L1-norm methods are provided; for details, see Chaya, Castura & Greenacre (2025) <doi:10.1016/j.foodqual.2025.105639>.
Offers a set of objects tailored to simplify working with choice data. It enables the computation of choice probabilities and the likelihood of various types of choice models based on given data.
This package performs simulation-based inference as an alternative to the delta method for obtaining valid confidence intervals and p-values for regression post-estimation quantities, such as average marginal effects and predictions at representative values. This framework for simulation-based inference is especially useful when the resulting quantity is not normally distributed and the delta method approximation fails. The methodology is described in Greifer, et al. (2025) <doi:10.32614/RJ-2024-015>. clarify is meant to replace some of the functionality of the archived package Zelig'; see the vignette "Translating Zelig to clarify" for replicating this functionality.