Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package implements computationally-efficient construction of confidence intervals from permutation or randomization tests for simple differences in means, based on Nguyen (2009) <doi:10.15760/etd.7798>.
This package provides a reliable and efficient tool for cleaning univariate time series data. It implements reliable and efficient procedures for automating the process of cleaning univariate time series data. The package provides integration with already developed and deployed tools for missing value imputation and outlier detection. It also provides a way of visualizing large time-series data in different resolutions.
Bindings to qpdf': qpdf (<https://qpdf.sourceforge.io/>) is a an open-source PDF rendering library that allows to conduct content-preserving transformations of PDF files such as split, combine, and compress PDF files.
Robust regression methods for compositional data. The distribution of the estimates can be approximated with various bootstrap methods. These bootstrap methods are available for the compositional as well as for standard robust regression estimates. This allows for direct comparison between them.
Generate and analyse crossover designs from combinatorial or search algorithms as well as from literature and a GUI to access them.
This package provides a tool to easily run and visualise supervised and unsupervised state of the art customer segmentation. It is built like a pipeline covering the 3 main steps in a segmentation project: pre-processing, modelling, and plotting. Users can either run the pipeline as a whole, or choose to run any one of the three individual steps. It is equipped with a supervised option (tree optimisation) and an unsupervised option (k-clustering) as default models.
Enhancing T cell receptor (TCR) sequence analysis, ClusTCR2', based on ClusTCR python program, leverages Hamming distance to compare the complement-determining region three (CDR3) sequences for sequence similarity, variable gene (V gene) and length. The second step employs the Markov Cluster Algorithm to identify clusters within an undirected graph, providing a summary of amino acid motifs and matrix for generating network plots. Tailored for single-cell RNA-seq data with integrated TCR-seq information, ClusTCR2 is integrated into the Single Cell TCR and Expression Grouped Ontologies (STEGO) R application or STEGO.R'. See the two publications for more details. Sebastiaan Valkiers, Max Van Houcke, Kris Laukens, Pieter Meysman (2021) <doi:10.1093/bioinformatics/btab446>, Kerry A. Mullan, My Ha, Sebastiaan Valkiers, Nicky de Vrij, Benson Ogunjimi, Kris Laukens, Pieter Meysman (2023) <doi:10.1101/2023.09.27.559702>.
This package provides tools for working with observational health data in the Observational Medical Outcomes Partnership (OMOP) Common Data Model format with a pipe friendly syntax. Common data model database table references are stored in a single compound object along with metadata.
The dependencies of CRAN packages can be analysed in a network fashion. For each package we can obtain the packages that it depends, imports, suggests, etc. By iterating this procedure over a number of packages, we can build, visualise, and analyse the dependency network, enabling us to have a bird's-eye view of the CRAN ecosystem. One aspect of interest is the number of reverse dependencies of the packages, or equivalently the in-degree distribution of the dependency network. This can be fitted by the power law and/or an extreme value mixture distribution <doi:10.1111/stan.12355>, of which functions are provided.
It uses the first-order sensitivity index to measure whether the weights assigned by the creator of the composite indicator match the actual importance of the variables. Moreover, the variance inflation factor is used to reduce the set of correlated variables. In the case of a discrepancy between the importance and the assigned weight, the script determines weights that allow adjustment of the weights to the intended impact of variables. If the optimised weights are unable to reflect the desired importance, the highly correlated variables are reduced, taking into account variance inflation factor. The final outcome of the script is the calculated value of the composite indicator based on optimal weights and a reduced set of variables, and the linear ordering of the analysed objects.
Calculates pointwise confidence intervals for the cumulative distribution function of the event time for current status data, data where each individual is assessed at one time to see if they had the event or not by the assessment time.
This package provides a minimal R-package to approximately detect global and imported functions or variables from R-source code or R-packages by static code analysis.
This package implements the three-step workflow for robust analysis of change in two repeated measurements of continuous outcomes, described in Ning et al. (in press), "Robust estimation of the effect of an exposure on the change in a continuous outcome", BMC Medical Research Methodology.
Computation of decision intervals (H) and average run lengths (ARL) for CUSUM charts. Details of the method are seen in Hawkins and Olwell (2012): Cumulative sum charts and charting for quality improvement, Springer Science & Business Media.
This package provides a generic, easy-to-use and intuitive pharmacokinetic/pharmacodynamic (PK/PD) simulation platform based on R packages rxode2 and mrgsolve'. CAMPSIS provides an abstraction layer over the underlying processes of writing a PK/PD model, assembling a custom dataset and running a simulation. CAMPSIS has a strong dependency to the R package campsismod', which allows to read/write a model from/to files and adapt it further on the fly in the R environment. Package campsis allows the user to assemble a dataset in an intuitive manner. Once the userâ s dataset is ready, the package is in charge of preparing the simulation, calling rxode2 or mrgsolve (at the user's choice) and returning the results, for the given model, dataset and desired simulation settings.
This package provides functions to make lifetables and to calculate hazard function estimate using Poisson regression model with splines. Includes function to draw simple flowchart of cohort study. Function boxesLx() makes boxes of transition rates between states. It utilizes Epi package Lexis data.
This package provides a simple set of classes and methods for mapping between scalar intensity values and colors. There is also support for layering maps on top of one another using alpha composition.
This package provides a framework for estimating causal effects of a continuous exposure using observational data, and implementing matching and weighting on the generalized propensity score. Wu, X., Mealli, F., Kioumourtzoglou, M.A., Dominici, F. and Braun, D., 2022. Matching on generalized propensity scores with continuous exposures. Journal of the American Statistical Association, pp.1-29.
This package provides a simple way to manage application settings by loading configuration values from .env or .ini files. It supports default values, type casting, and environment variable overrides, enabling a clean separation of configuration from code. Ideal for managing credentials, API keys, and deployment-specific settings.
Determining the value of Stirling numbers of 1st kind and 2nd kind,references: Bóna,Miklós(2017,ISBN 9789813148840).
The reliability of assessment tools is a crucial aspect of monitoring student performance in various educational settings. It ensures that the assessment outcomes accurately reflect a student's true level of performance. However, when assessments are combined, determining composite reliability can be challenging, especially for naturalistic and unbalanced datasets. This package provides an easy-to-use solution for calculating composite reliability for different assessment types. It allows for the inclusion of weight per assessment type and produces extensive G- and D-study results with graphical interpretations. Overall, our approach enhances the reliability of composite assessments, making it suitable for various education contexts.
Emulation of an application originally created by Paul Pukite. Computer Aided Rate Modeling and Simulation. Jan Pukite and Paul Pukite, (1998, ISBN 978-0-7803-3482), William J. Stewart, (1994, ISBN: 0-691-03699-3).
Cluster analysis with compositional data using the alpha--transformation. Relevant papers include: Tsagris M. and Kontemeniotis N. (2025), <doi:10.48550/arXiv.2509.05945>. Tsagris M.T., Preston S. and Wood A.T.A. (2011), <doi:10.48550/arXiv.1106.1451>. Garcia-Escudero Luis A., Gordaliza Alfonso, Matran Carlos, Mayo-Iscar Agustin. (2008), <doi:10.1214/07-AOS515>.
Apply styles to tag elements directly and with the .style pronoun. Using the pronoun, styles are created within the context of a tag element. Change borders, backgrounds, text, margins, layouts, and more.