Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Users can declare causal models over binary nodes, update beliefs about causal types given data, and calculate arbitrary queries. Updating is implemented in stan'. See Humphreys and Jacobs, 2023, Integrated Inferences (<DOI: 10.1017/9781316718636>) and Pearl, 2009 Causality (<DOI:10.1017/CBO9780511803161>).
This package provides a specialized tool is designed for assessing contextual bandit algorithms, particularly those aimed at handling overdispersed and zero-inflated count data. It offers a simulated testing environment that includes various models like Poisson, Overdispersed Poisson, Zero-inflated Poisson, and Zero-inflated Overdispersed Poisson. The package is capable of executing five specific algorithms: Linear Thompson sampling with log transformation on the outcome, Thompson sampling Poisson, Thompson sampling Negative Binomial, Thompson sampling Zero-inflated Poisson, and Thompson sampling Zero-inflated Negative Binomial. Additionally, it can generate regret plots to evaluate the performance of contextual bandit algorithms. This package is based on the algorithms by Liu et al. (2023) <arXiv:2311.14359>.
Calculate the distance between single-arm observational studies using covariate information to remove heterogeneity in Network Meta-Analysis (NMA) of randomized clinical trials. Facilitate the inclusion of observational data in NMA, enhancing the comprehensiveness and robustness of comparative effectiveness research. Schmitz (2018) <doi:10.1186/s12874-018-0509-7>.
This package provides a comprehensive set of functions designed for multivariate mean monitoring using the Critical-to-X Control Chart. These functions enable the determination of optimal control limits based on a specified in-control Average Run Length (ARL), the calculation of out-of-control ARL for a given control limit, and post-signal analysis to identify the specific variable responsible for a detected shift in the mean. This suite of tools provides robust support for precise and effective process monitoring and analysis.
Several nonparametric estimators of autocovariance functions. Procedures for constructing their confidence regions by using bootstrap techniques. Methods to correct autocovariance estimators and several tools for analysing and comparing them. Supplementary functions, including kernel computations and discrete cosine Fourier transforms. For more details see Bilchouris and Olenko (2025) <doi:10.17713/ajs.v54i1.1975>.
Execute command line programs and format results for interactive use. It is based on the package processx so it does not use shell to start up the process like system() and system2(). It also provides a simpler and cleaner interface than processx::run().
Compute Chinese capital stocks in provinces level, based on Zhang (2008) <DOI:10.1080/14765280802028302>.
Trading of Condor Options Strategies is represented here through their Graphs. The graphic indicators, strategies, calculations, functions and all the discussions are for academic, research, and educational purposes only and should not be construed as investment advice and come with absolutely no Liability. Guy Cohen (â The Bible of Options Strategies (2nd ed.)â , 2015, ISBN: 9780133964028). Zura Kakushadze, Juan A. Serur (â 151 Trading Strategiesâ , 2018, ISBN: 9783030027919). John C. Hull (â Options, Futures, and Other Derivatives (11th ed.)â , 2022, ISBN: 9780136939979).
Cronbach's alpha and McDonald's omega are widely used reliability or internal consistency measures in social, behavioral and education sciences. Alpha is reported in nearly every study that involves measuring a construct through multiple test items. The package coefficientalpha calculates coefficient alpha and coefficient omega with missing data and non-normal data. Robust standard errors and confidence intervals are also provided. A test is also available to test the tau-equivalent and homogeneous assumptions. Since Version 0.5, the bootstrap confidence intervals were added.
Calculate with spectral properties of light sources, materials, cameras, eyes, and scanners. Build complex systems from simpler parts using a spectral product algebra. For light sources, compute CCT, CRI, SSI, and IES TM-30 reports. For object colors, compute optimal colors and Logvinenko coordinates. Work with the standard CIE illuminants and color matching functions, and read spectra from text files, including CGATS files. Estimate a spectrum from its response. A user guide and 9 vignettes are included.
Evaluates predictive performance under feature-level missingness in repeated-measures continuous glucose monitoring-like data. The benchmark injects missing values at user-specified rates, imputes incomplete feature matrices using an iterative chained-equations approach inspired by multivariate imputation by chained equations (MICE; Azur et al. (2011) <doi:10.1002/mpr.329>), fits Random Forest regression models (Breiman (2001) <doi:10.1023/A:1010933404324>) and k-nearest-neighbor regression models (Zhang (2016) <doi:10.21037/atm.2016.03.37>), and reports mean absolute percentage error and R-squared across missingness rates.
This package provides a generic, easy-to-use and intuitive pharmacokinetic/pharmacodynamic (PK/PD) simulation platform based on the R packages rxode2 and mrgsolve'. Campsis provides an abstraction layer over the underlying processes of defining a PK/PD model, assembling a custom dataset and running a simulation. The package has a strong dependency on the R package campsismod', which allows models to be read from and written to files, including through a JSON-based interface, and to be adapted further on the fly in the R environment. In addition, campsis allows users to assemble datasets in an intuitive manner, including via a JSON-based interface to import Campsis datasets defined using formal JSON schemas distributed with the package. Once the dataset is ready, the package prepares the simulation, calls rxode2 or mrgsolve (at the user's choice), and returns the results for the given model, dataset and desired simulation settings. The package itself is licensed under the GPL (>= 3); the JSON schema files shipped in inst/extdata are licensed separately under the Creative Commons Attribution 4.0 International (CC BY 4.0).
Generate a candidate code list for the Observational Medical Outcomes Partnership (OMOP) common data model based on string matching. For a given search strategy, a candidate code list will be returned.
Search across R files with contextual results, highlights and clickable links. Includes an add-in for further workflow enhancement.
This package provides an array of statistical models common in causal inference such as standardization, IP weighting, propensity matching, outcome regression, and doubly-robust estimators. Estimates of the average treatment effects from each model are given with the standard error and a 95% Wald confidence interval (Hernan, Robins (2020) <https://miguelhernan.org/whatifbook/>).
This package provides an expectation maximization (EM) algorithm to fit a mixture of continuous time Markov models for use with clickstream or other sequence type data. Gallaugher, M.P.B and McNicholas, P.D. (2018) <arXiv:1802.04849>.
This package implements parametric (Direct) regression methods for modeling cumulative incidence functions (CIFs) in the presence of competing risks. Methods include the direct Gompertz-based approach and generalized regression models as described in Jeong and Fine (2006) <doi:10.1111/j.1467-9876.2006.00532.x> and Jeong and Fine (2007) <doi:10.1093/biostatistics/kxj040>. The package facilitates maximum likelihood estimation, variance computation, with applications to clinical trials and survival analysis.
This data package contains monthly climate data in Germany, it can be used for heating and cooling calculations (external temperature, heating / cooling days, solar radiation).
This package provides methods and functions to implement a Recommendation System based on Collaborative Filtering Methodology. See Aggarwal (2016) <doi:10.1007/978-3-319-29659-3> for an overview.
It aims to find significant pathways through network topology information. It has several advantages compared with current pathway enrichment tools. First, pathway node instead of single gene is taken as the basic unit when analysing networks to meet the fact that genes must be constructed into complexes to hold normal functions. Second, multiple network centrality measures are applied simultaneously to measure importance of nodes from different aspects to make a full view on the biological system. CePa extends standard pathway enrichment methods, which include both over-representation analysis procedure and gene-set analysis procedure. <doi:10.1093/bioinformatics/btt008>.
Data cleaning functions for classes logical, factor, numeric, character, currency and Date to make data cleaning fast and easy. Relying on very few dependencies, it provides smart guessing, but with user options to override anything if needed.
Utility functions that allow checking the basic validity of a function argument or any other value, including generating an error and assigning a default in a single line of code. The main purpose of the package is to provide simple and easily readable argument checking to improve code robustness.
This package implements the adaptive designs for integrated phase I/II trials of drug combinations via continual reassessment method (CRM) to evaluate toxicity and efficacy simultaneously for each enrolled patient cohort based on Bayesian inference. It supports patients assignment guidance in a single trial using current enrolled data, as well as conducting extensive simulation studies to evaluate operating characteristics before the trial starts. It includes various link functions such as empiric, one-parameter logistic, two-parameter logistic, and hyperbolic tangent, as well as considering multiple prior distributions of the parameters like normal distribution, gamma distribution and exponential distribution to accommodate diverse clinical scenarios. Method using Bayesian framework with empiric link function is described in: Wages and Conaway (2014) <doi:10.1002/sim.6097>.
Classification of climate according to Koeppen - Geiger, of aridity indices, of continentality indices, of water balance after Thornthwaite, of viticultural bioclimatic indices. Drawing climographs: Thornthwaite, Peguy, Bagnouls-Gaussen.