Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Python implementation of the Tensor Train (TT) toolbox. It contains several important packages for working with the TT-format in Python. It is able to do TT-interpolation, solve linear systems, eigenproblems, solve dynamical problems. Several computational routines are done in Fortran (which can be used separately), and are wrapped with the f2py tool.
Generates LaTeX source from Python functions.
Access dict values as attributes (works recursively).
Chameleon is a dense linear algebra solver relying on sequential task-based algorithms where sub-tasks of the overall algorithms are submitted to a run-time system. Such a system is a layer between the application and the hardware which handles the scheduling and the effective execution of tasks on the processing units. A run-time system such as StarPU is able to manage automatically data transfers between not shared memory area (CPUs-GPUs, distributed nodes).
QUARK (QUeuing And Runtime for Kernels) provides a library that enables the dynamic execution of tasks with data dependencies in a multi-core, multi-socket, shared-memory environment. QUARK infers data dependencies and precedence constraints between tasks from the way that the data is used, and then executes the tasks in an asynchronous, dynamic fashion in order to achieve a high utilization of the available resources.
Example showing how to use starpu for implementing a distributed gemm in C++.
PaRSEC is a generic framework for architecture aware scheduling and management of micro-tasks on distributed many-core heterogeneous architectures.
PaStiX (Parallel Sparse matriX package) is a scientific library that provides a high performance parallel solver for very large sparse linear systems based on direct methods. Numerical algorithms are implemented in single or double precision (real or complex) using LLt, LDLt and LU with static pivoting (for non symmetric matrices having a symmetric pattern). This solver also provides some low-rank compression methods to reduce the memory footprint and/or the time-to-solution.
DPLASMA is the leading implementation of a dense linear algebra package for distributed, accelerated, heterogeneous systems. It is designed to deliver sustained performance for distributed systems where each node featuring multiple sockets of multicore processors, and if available, accelerators like GPUs or Intel Xeon Phi. DPLASMA achieves this objective through the state of the art PaRSEC runtime, porting the Parallel Linear Algebra Software for Multicore Architectures (PLASMA) algorithms to the distributed memory realm.
Example showing how to use starpu for implementing a distributed gemm.
PaRSEC is a generic framework for architecture aware scheduling and management of micro-tasks on distributed many-core heterogeneous architectures.
Chameleon is a dense linear algebra solver relying on sequential task-based algorithms where sub-tasks of the overall algorithms are submitted to a run-time system. Such a system is a layer between the application and the hardware which handles the scheduling and the effective execution of tasks on the processing units. A run-time system such as StarPU is able to manage automatically data transfers between not shared memory area (CPUs-GPUs, distributed nodes).
pmtool aims at performing post-mortem analyses of the behavior of StarPU applications. Provide lower bounds on makespan. Study the performance of different schedulers in a simple context. Limitations: ignore communications for the moment; branch comms attempts to remove this limitation.
PaStiX (Parallel Sparse matriX package) is a scientific library that provides a high performance parallel solver for very large sparse linear systems based on direct methods. Numerical algorithms are implemented in single or double precision (real or complex) using LLt, LDLt and LU with static pivoting (for non symmetric matrices having a symmetric pattern). This solver also provides some low-rank compression methods to reduce the memory footprint and/or the time-to-solution.
Chameleon is a dense linear algebra solver relying on sequential task-based algorithms where sub-tasks of the overall algorithms are submitted to a run-time system. Such a system is a layer between the application and the hardware which handles the scheduling and the effective execution of tasks on the processing units. A run-time system such as StarPU is able to manage automatically data transfers between not shared memory area (CPUs-GPUs, distributed nodes).
Chameleon is a dense linear algebra solver relying on sequential task-based algorithms where sub-tasks of the overall algorithms are submitted to a run-time system. Such a system is a layer between the application and the hardware which handles the scheduling and the effective execution of tasks on the processing units. A run-time system such as StarPU is able to manage automatically data transfers between not shared memory area (CPUs-GPUs, distributed nodes).
MPI for Python (mpi4py) provides bindings of the Message Passing Interface (MPI) standard for the Python programming language, allowing any Python program to exploit multiple processors.
mpi4py is constructed on top of the MPI-1/MPI-2 specification and provides an object oriented interface which closely follows MPI-2 C++ bindings. It supports point-to-point and collective communications of any picklable Python object as well as optimized communications of Python objects (such as NumPy arrays) that expose a buffer interface.
Example showing how to use starpu to implement a distributed regular 2D stencil with communication-avoiding techniques
Assembles fem matrices using an efficient vectorization method.
JUBE helps perform and analyze benchmarks in a systematic way. For each benchmarked application, benchmark data is stored in a format that allows JUBE to deduct the desired information. This data can be parsed by automatic pre- and post-processing scripts that draw information and store it more densely for manual interpretation.
PaStiX (Parallel Sparse matriX package) is a scientific library that provides a high performance parallel solver for very large sparse linear systems based on direct methods. Numerical algorithms are implemented in single or double precision (real or complex) using LLt, LDLt and LU with static pivoting (for non symmetric matrices having a symmetric pattern). This solver also provides some low-rank compression methods to reduce the memory footprint and/or the time-to-solution.
Linear algebra package implementing advanced parallel domain decomposition methods.
Chameleon is a dense linear algebra solver relying on sequential task-based algorithms where sub-tasks of the overall algorithms are submitted to a run-time system. Such a system is a layer between the application and the hardware which handles the scheduling and the effective execution of tasks on the processing units. A run-time system such as StarPU is able to manage automatically data transfers between not shared memory area (CPUs-GPUs, distributed nodes).
Chameleon is a dense linear algebra solver relying on sequential task-based algorithms where sub-tasks of the overall algorithms are submitted to a run-time system. Such a system is a layer between the application and the hardware which handles the scheduling and the effective execution of tasks on the processing units. A run-time system such as StarPU is able to manage automatically data transfers between not shared memory area (CPUs-GPUs, distributed nodes).