Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Ginkgo is a high-performance numerical linear algebra library for many-core systems, with a focus on solution of sparse linear systems.
A collection of host-based and device-based microbenchmarks for MPI communication with CUDA support.
(guix-science-nonfree packages bioconductor)This package provides more than 9900 annotated position frequency matrices from 14 public sources, for multiple organisms.
(guix-science-nonfree packages bioconductor)This package implements the Signaling Pathway Impact Analysis (SPIA) which uses the information form a list of differentially expressed genes and their log fold changes together with signaling pathways topology, in order to identify the pathways most relevant to the condition under the study.
(guix-science-nonfree packages bioconductor)This is a package for inference of protein activity from gene expression data. It includes the VIPER and msVIPER algorithms
(guix-science-nonfree packages bioconductor)Non-parametric method for identifying differentially expressed (up- or down- regulated) genes based on the estimated percentage of false predictions (pfp). The method can combine data sets from different origins (meta-analysis) to increase the power of the identification.
(guix-science-nonfree packages bioconductor)This package is used for the detection of differentially expressed genes (DEGs) from the comparison of two biological conditions (treated vs. untreated, diseased vs. normal, mutant vs. wild-type) among different levels of gene expression (transcriptome ,translatome, proteome), using several statistical methods: Rank Product, Translational Efficiency, t-test, Limma, ANOTA, DESeq, edgeR. It also provides the possibility to plot the results with scatterplots, histograms, MA plots, standard deviation (SD) plots, coefficient of variation (CV) plots.
(guix-science-nonfree packages bioconductor)DoRothEA is a gene regulatory network containing signed transcription factor. DoRothEA regulons, the collection of a TF and its transcriptional targets, were curated and collected from different types of evidence for both human and mouse. A confidence level was assigned to each TF-target interaction based on the number of supporting evidence.
Kokkos Core implements a programming model in C++ for writing performance portable applications targeting all major HPC platforms. For that purpose it provides abstractions for both parallel execution of code and data management. Kokkos is designed to target complex node architectures with N-level memory hierarchies and multiple types of execution resources.
Kokkos Core implements a programming model in C++ for writing performance portable applications targeting all major HPC platforms. For that purpose it provides abstractions for both parallel execution of code and data management. Kokkos is designed to target complex node architectures with N-level memory hierarchies and multiple types of execution resources.
Kokkos Core implements a programming model in C++ for writing performance portable applications targeting all major HPC platforms. For that purpose it provides abstractions for both parallel execution of code and data management. Kokkos is designed to target complex node architectures with N-level memory hierarchies and multiple types of execution resources.
Kokkos Core implements a programming model in C++ for writing performance portable applications targeting all major HPC platforms. For that purpose it provides abstractions for both parallel execution of code and data management. Kokkos is designed to target complex node architectures with N-level memory hierarchies and multiple types of execution resources.
Kokkos Core implements a programming model in C++ for writing performance portable applications targeting all major HPC platforms. For that purpose it provides abstractions for both parallel execution of code and data management. Kokkos is designed to target complex node architectures with N-level memory hierarchies and multiple types of execution resources.
Kokkos Core implements a programming model in C++ for writing performance portable applications targeting all major HPC platforms. For that purpose it provides abstractions for both parallel execution of code and data management. Kokkos is designed to target complex node architectures with N-level memory hierarchies and multiple types of execution resources.
Kokkos Core implements a programming model in C++ for writing performance portable applications targeting all major HPC platforms. For that purpose it provides abstractions for both parallel execution of code and data management. Kokkos is designed to target complex node architectures with N-level memory hierarchies and multiple types of execution resources.
The rfacts package is an R interface to the Fixed and Adaptive Clinical Trial Simulator FACTS. It programmatically invokes FACTS to run clinical trial simulations. It aggregates simulation output data into tidy data frames. These capabilities provide end-to-end automation for large-scale simulation pipelines, and they enhance computational reproducibility.
This package provides several cubic spline interpolation methods of H. Akima for irregular and regular gridded data are available through this package, both for the bivariate case and univariate case. Linear interpolation of irregular gridded data is also covered. A bilinear interpolator for regular grids was also added for comparison with the bicubic interpolator on regular grids.
This package provides Python low-level bindings for NVIDIA CUDA toolkit.
This package provides a set of APIs which can be used at runtime to combine multiple CUDA objects into one CUDA fat binary (fatbin). The APIs accept inputs in multiple formats, either device cubins, PTX, or LTO-IR. The output is a fatbin that can be loaded by cuModuleLoadData of the CUDA Driver API. The functionality in this library is similar to the fatbinary offline tool in the CUDA toolkit, with the following advantages:
Support for runtime fatbin creation.
The clients get fine grain control over the input process.
Supports direct input from memory, rather than requiring inputs be written to files.
This package provides a command-line tool to profile CUDA kernels. It enables the collection of a timeline of CUDA-related activities on both CPU and GPU, including kernel execution, memory transfers, memory set and CUDA API calls and events or metrics for CUDA kernels.
This package decodes (demangles) low-level identifiers that have been mangled by CUDA C++ into user readable names. For every input alphanumeric word, the output of cu++filt is either the demangled name if the name decodes to a CUDA C++ name, or the original name itself.
This package provides the CUDA Direct Sparse Solver library.
This package provides a set of GPU-accelerated basic linear algebra subroutines used for handling sparse matrices that perform significantly faster than CPU-only alternatives. Depending on the specific operation, the library targets matrices with sparsity ratios in the range between 70%-99.9%.
This package provides a GPU-accelerated library of primitives for deep neural networks, with highly tuned implementations for standard routines such as forward and backward convolution, attention, matmul, pooling, and normalization.