Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides the CUDA compiler and the CUDA run-time support libraries for NVIDIA GPUs, all of which are proprietary.
This package provides the CUDA compiler and the CUDA run-time support libraries for NVIDIA GPUs, all of which are proprietary.
This package provides facilities that focus on the simple and efficient generation of high-quality pseudorandom and quasirandom numbers. A pseudorandom sequence of numbers satisfies most of the statistical properties of a truly random sequence but is generated by a deterministic algorithm. A quasirandom sequence of -dimensional points is generated by a deterministic algorithm designed to fill an -dimensional space evenly.
This package provides a high-performance, GPU accelerated JPEG decoding functionality for image formats commonly used in deep learning and hyperscale multimedia applications. The library offers single and batched JPEG decoding capabilities which efficiently utilize the available GPU resources for optimum performance; and the flexibility for users to manage the memory allocation needed for decoding.
The nvJPEG library enables the following functions: use the JPEG image data stream as input; retrieve the width and height of the image from the data stream, and use this retrieved information to manage the GPU memory allocation and the decoding. A dedicated API is provided for retrieving the image information from the raw JPEG image data stream.
The encoding functions of the nvJPEG library perform GPU-accelerated compression of user’s image data to the JPEG bitstream. User can provide input data in a number of formats and colorspaces, and control the encoding process with parameters. Encoding functionality will allocate temporary buffers using user-provided memory allocator.
This binary extracts information from standalone cubin files and presents them in human readable format. The output of nvdisasm includes CUDA assembly code for each kernel, listing of ELF data sections and other CUDA specific sections. Output style and options are controlled through nvdisasm command-line options. nvdisasm also does control flow analysis to annotate jump/branch targets and makes the output easier to read.
This package provides a <bits/floatn.h> header to override that of glibc and disable float128 support. This is required allow the use of nvcc with CUDA 8.0 and glibc 2.26+. Otherwise, nvcc fails like this:
/gnu/store/…-glibc-2.26.105-g0890d5379c/include/bits/floatn.h(61): error: invalid argument to attribute "__mode__" /gnu/store/…-glibc-2.26.105-g0890d5379c/include/bits/floatn.h(73): error: identifier "__float128" is undefined
This package provides an interface for generating PTX code from both binary and text NVVM IR inputs.
This package provides a binary that prunes host object files and libraries to only contain device code for the specified targets.
This package provides the proprietary cuTENSOR library for NVIDIA GPUs.
This package provides the CUDA Deep Neural Network library.
This package provides the CUDA compiler and the CUDA run-time support libraries for NVIDIA GPUs, all of which are proprietary.
This package provides a GPU-accelerated library of primitives for deep neural networks, with highly tuned implementations for standard routines such as forward and backward convolution, attention, matmul, pooling, and normalization.
This package provides the CUDA compiler and the CUDA run-time support libraries for NVIDIA GPUs, all of which are proprietary.
CUTLASS is a collection of CUDA C++ template abstractions for implementing high-performance matrix-matrix multiplication (GEMM) and related computations at all levels and scales within CUDA. It incorporates strategies for hierarchical decomposition and data movement similar to those used to implement cuBLAS and cuDNN.
CUTLASS decomposes these ``moving parts'' into reusable, modular software components abstracted by C++ template classes. Primitives for different levels of a conceptual parallelization hierarchy can be specialized and tuned via custom tiling sizes, data types, and other algorithmic policy. The resulting flexibility simplifies their use as building blocks within custom kernels and applications.
CUTLASS is a collection of CUDA C++ template abstractions for implementing high-performance matrix-matrix multiplication (GEMM) and related computations at all levels and scales within CUDA. It incorporates strategies for hierarchical decomposition and data movement similar to those used to implement cuBLAS and cuDNN.
CUTLASS decomposes these ``moving parts'' into reusable, modular software components abstracted by C++ template classes. Primitives for different levels of a conceptual parallelization hierarchy can be specialized and tuned via custom tiling sizes, data types, and other algorithmic policy. The resulting flexibility simplifies their use as building blocks within custom kernels and applications.
This package provides the CUDA compiler and the CUDA run-time support libraries for NVIDIA GPUs, all of which are proprietary.
NCCL (pronounced "Nickel") is a stand-alone library of standard communication routines for NVIDIA GPUs, implementing all-reduce, all-gather, reduce, broadcast, reduce-scatter, as well as any send/receive based communication pattern. It has been optimized to achieve high bandwidth on platforms using PCIe, NVLink, NVswitch, as well as networking using InfiniBand Verbs or TCP/IP sockets. NCCL supports an arbitrary number of GPUs installed in a single node or across multiple nodes, and can be used in either single- or multi-process (e.g., MPI) applications.
CUTLASS is a collection of CUDA C++ template abstractions for implementing high-performance matrix-matrix multiplication (GEMM) and related computations at all levels and scales within CUDA. It incorporates strategies for hierarchical decomposition and data movement similar to those used to implement cuBLAS and cuDNN.
CUTLASS decomposes these ``moving parts'' into reusable, modular software components abstracted by C++ template classes. Primitives for different levels of a conceptual parallelization hierarchy can be specialized and tuned via custom tiling sizes, data types, and other algorithmic policy. The resulting flexibility simplifies their use as building blocks within custom kernels and applications.
This package provides the CUDA compiler and the CUDA run-time support libraries for NVIDIA GPUs, all of which are proprietary.
This package provides a minimal low-level profiling API for CUDA.
This package provides the CUDA C++ developers with building blocks that make it easier to write safe and efficient code. It unifies three essential former CUDA C++ libraries into a single repository:
Thrust (former repo)
CUB (former repo)
libcudacxx (former repo)
This package provides a an interactive profiler for CUDA and NVIDIA OptiX that provides detailed performance metrics and API debugging via a user interface and command-line tool. Users can run guided analysis and compare results with a customizable and data-driven user interface, as well as post-process and analyze results in their own workflows.
This package enables the creation of profiling and tracing tools that target CUDA applications and give insight into the CPU and GPU behavior of CUDA applications. It provides the following APIs:
the Activity API,
the Callback API,
the Event API,
the Metric API,
the Profiling API,
the PC Sampling API,
the Checkpoint API.
This package provides the CUDA compiler and the CUDA run-time support libraries for NVIDIA GPUs, all of which are proprietary.