Chameleon is a dense linear algebra solver relying on sequential task-based algorithms where sub-tasks of the overall algorithms are submitted to a run-time system. Such a system is a layer between the application and the hardware which handles the scheduling and the effective execution of tasks on the processing units. A run-time system such as StarPU is able to manage automatically data transfers between not shared memory area (CPUs-GPUs, distributed nodes).
Chameleon is a dense linear algebra solver relying on sequential task-based algorithms where sub-tasks of the overall algorithms are submitted to a run-time system. Such a system is a layer between the application and the hardware which handles the scheduling and the effective execution of tasks on the processing units. A run-time system such as StarPU is able to manage automatically data transfers between not shared memory area (CPUs-GPUs, distributed nodes).
This package lets you assign distinct colors to arbitrary multi-dimensional data, considering its structure.
Chameleon is a dense linear algebra solver relying on sequential task-based algorithms where sub-tasks of the overall algorithms are submitted to a run-time system. Such a system is a layer between the application and the hardware which handles the scheduling and the effective execution of tasks on the processing units. A run-time system such as StarPU is able to manage automatically data transfers between not shared memory area (CPUs-GPUs, distributed nodes).
Chameleon is a dense linear algebra solver relying on sequential task-based algorithms where sub-tasks of the overall algorithms are submitted to a run-time system. Such a system is a layer between the application and the hardware which handles the scheduling and the effective execution of tasks on the processing units. A run-time system such as StarPU is able to manage automatically data transfers between not shared memory area (CPUs-GPUs, distributed nodes).
Mini-chameleon is an educational purpose dense linear algebra solver. As provided, it essentially provides drivers while the actual computational routines remain to be completed. The goal is to implement a dense matrix-matrix product and an LU factorization, first targeting a sequential implementation, followed by an simd version, a shared-memory openmp one, a distributed memory MPI one, an MPI+openmp one and a runtime-based starpu one.
Chameleon is a dense linear algebra solver relying on sequential task-based algorithms where sub-tasks of the overall algorithms are submitted to a run-time system. Such a system is a layer between the application and the hardware which handles the scheduling and the effective execution of tasks on the processing units. A run-time system such as StarPU is able to manage automatically data transfers between not shared memory area (CPUs-GPUs, distributed nodes).
Chameleon is a dense linear algebra solver relying on sequential task-based algorithms where sub-tasks of the overall algorithms are submitted to a run-time system. Such a system is a layer between the application and the hardware which handles the scheduling and the effective execution of tasks on the processing units. A run-time system such as StarPU is able to manage automatically data transfers between not shared memory area (CPUs-GPUs, distributed nodes).
Chameleon is a dense linear algebra solver relying on sequential task-based algorithms where sub-tasks of the overall algorithms are submitted to a run-time system. Such a system is a layer between the application and the hardware which handles the scheduling and the effective execution of tasks on the processing units. A run-time system such as StarPU is able to manage automatically data transfers between not shared memory area (CPUs-GPUs, distributed nodes).
Chameleon is a dense linear algebra solver relying on sequential task-based algorithms where sub-tasks of the overall algorithms are submitted to a run-time system. Such a system is a layer between the application and the hardware which handles the scheduling and the effective execution of tasks on the processing units. A run-time system such as StarPU is able to manage automatically data transfers between not shared memory area (CPUs-GPUs, distributed nodes).
Chameleon is a dense linear algebra solver relying on sequential task-based algorithms where sub-tasks of the overall algorithms are submitted to a run-time system. Such a system is a layer between the application and the hardware which handles the scheduling and the effective execution of tasks on the processing units. A run-time system such as StarPU is able to manage automatically data transfers between not shared memory area (CPUs-GPUs, distributed nodes).
Chameleon is a dense linear algebra solver relying on sequential task-based algorithms where sub-tasks of the overall algorithms are submitted to a run-time system. Such a system is a layer between the application and the hardware which handles the scheduling and the effective execution of tasks on the processing units. A run-time system such as StarPU is able to manage automatically data transfers between not shared memory area (CPUs-GPUs, distributed nodes).
Chameleon is a dense linear algebra solver relying on sequential task-based algorithms where sub-tasks of the overall algorithms are submitted to a run-time system. Such a system is a layer between the application and the hardware which handles the scheduling and the effective execution of tasks on the processing units. A run-time system such as StarPU is able to manage automatically data transfers between not shared memory area (CPUs-GPUs, distributed nodes).
Chameleon is a dense linear algebra solver relying on sequential task-based algorithms where sub-tasks of the overall algorithms are submitted to a run-time system. Such a system is a layer between the application and the hardware which handles the scheduling and the effective execution of tasks on the processing units. A run-time system such as StarPU is able to manage automatically data transfers between not shared memory area (CPUs-GPUs, distributed nodes).
This project provides routines for performing low-rank matrix approximations based on randomized techniques.
Mini-chameleon is an educational purpose dense linear algebra solver. As provided, it essentially provides drivers while the actual computational routines remain to be completed. The goal is to implement a dense matrix-matrix product and an LU factorization, first targeting a sequential implementation, followed by an simd version, a shared-memory openmp one, a distributed memory MPI one, an MPI+openmp one and a runtime-based starpu one.
Chameleon is a dense linear algebra solver relying on sequential task-based algorithms where sub-tasks of the overall algorithms are submitted to a run-time system. Such a system is a layer between the application and the hardware which handles the scheduling and the effective execution of tasks on the processing units. A run-time system such as StarPU is able to manage automatically data transfers between not shared memory area (CPUs-GPUs, distributed nodes).
Chameleon is a dense linear algebra solver relying on sequential task-based algorithms where sub-tasks of the overall algorithms are submitted to a run-time system. Such a system is a layer between the application and the hardware which handles the scheduling and the effective execution of tasks on the processing units. A run-time system such as StarPU is able to manage automatically data transfers between not shared memory area (CPUs-GPUs, distributed nodes).
Chameleon is a dense linear algebra solver relying on sequential task-based algorithms where sub-tasks of the overall algorithms are submitted to a run-time system. Such a system is a layer between the application and the hardware which handles the scheduling and the effective execution of tasks on the processing units. A run-time system such as StarPU is able to manage automatically data transfers between not shared memory area (CPUs-GPUs, distributed nodes).
Chameleon is a dense linear algebra solver relying on sequential task-based algorithms where sub-tasks of the overall algorithms are submitted to a run-time system. Such a system is a layer between the application and the hardware which handles the scheduling and the effective execution of tasks on the processing units. A run-time system such as StarPU is able to manage automatically data transfers between not shared memory area (CPUs-GPUs, distributed nodes).
Chameleon is a dense linear algebra solver relying on sequential task-based algorithms where sub-tasks of the overall algorithms are submitted to a run-time system. Such a system is a layer between the application and the hardware which handles the scheduling and the effective execution of tasks on the processing units. A run-time system such as StarPU is able to manage automatically data transfers between not shared memory area (CPUs-GPUs, distributed nodes).
This package provides Sequoia's reimplementation of the GnuPG
interface.
gpg-sq
is Sequoia's alternative implementation of a tool following the GnuPG command line interface. It provides a drop-in but not feature-complete replacement for the GnuPG project's gpg
.
This Guix package is built to use the nettle cryptographic library.
Chameleon is a dense linear algebra solver relying on sequential task-based algorithms where sub-tasks of the overall algorithms are submitted to a run-time system. Such a system is a layer between the application and the hardware which handles the scheduling and the effective execution of tasks on the processing units. A run-time system such as StarPU is able to manage automatically data transfers between not shared memory area (CPUs-GPUs, distributed nodes).
Librairies for Multivariate Data Analysis and Dimensionality Reduction for very large datasets.