Flex is a tool for generating scanners. A scanner, sometimes called a tokenizer, is a program which recognizes lexical patterns in text. The flex program reads user-specified input files, or its standard input if no file names are given, for a description of a scanner to generate. The description is in the form of pairs of regular expressions and C code, called rules. Flex generates a C source file named, "lex.yy.c", which defines the function yylex(). The file "lex.yy.c" can be compiled and linked to produce an executable. When the executable is run, it analyzes its input for occurrences of text matching the regular expressions for each rule. Whenever it finds a match, it executes the corresponding C code.
Flexbar preprocesses high-throughput nucleotide sequencing data efficiently. It demultiplexes barcoded runs and removes adapter sequences. Moreover, trimming and filtering features are provided. Flexbar increases read mapping rates and improves genome and transcriptome assemblies. It supports next-generation sequencing data in fasta/q and csfasta/q format from Illumina, Roche 454, and the SOLiD platform.
This package implements a fast, flexible method for simulating continuous variables with specified rank correlations using the Imanâ Conover transformation (Iman & Conover, 1982 <doi:10.1080/03610918208812265>) and back-ranking. Includes plotting tools and error-diagnostics.
This package provides flexible odds ratio curves that enable modeling non-linear relationships between continuous predictors and binary outcomes. This package facilitates a deeper understanding of the impact of each continuous predictor on the outcome by presenting results in terms of odds ratio (OR) curves based on splines. These curves allow for comparison against a specified reference value, aiding in the interpretation of the predictor's effect.
Implementation of the Stochastic Expectation Maximisation (StEM
) approach to Record Linkage described in the paper by K. Robach, S. L. van der Pas, M. A. van de Wiel and M. H. Hof (2024, <doi:10.48550/arXiv.2407.06835>
); see citation("FlexRL
") for details. This is a record linkage method, for finding the common set of records among 2 data sources based on Partially Identifying Variables (PIVs) available in both sources. It includes modelling of dynamic Partially Identifying Variables (e.g. postal code) that may evolve over time and registration errors (missing values and mistakes in the registration). Low memory footprint.
Exports flextable objects to xlsx files, utilizing functionalities provided by flextable and openxlsx2'.
Allows maximum likelihood fitting of cluster-weighted models, a class of mixtures of regression models with random covariates. Methods are described in Angelo Mazza, Antonio Punzo, Salvatore Ingrassia (2018) <doi:10.18637/jss.v086.i02>.
This package provides color palettes designed to be reminiscent of text on paper. The color schemes were taken from <https://stephango.com/flexoki>. Includes discrete, continuous, and binned scales that are not necessarily color-blind friendly. Simple scale and theme functions are available for use with ggplot2'.
Application of the filtered monotonic polynomial (FMP) item response model to flexibly fit item response models. The package includes tools that allow the item response model to be build on any monotonic transformation of the latent trait metric, as described by Feuerstahler (2019) <doi:10.1007/s11336-018-9642-9>.
Extends the capabilities for flexible partitioning and model-based clustering available in the packages flexclust and flexmix to handle ordinal and mixed-with-ordinal data types via new distance, centroid and driver functions that make various assumptions regarding ordinality. Using them within the flex-scheme allows for easy comparisons across methods.
This package implements a general framework for finite mixtures of regression models using the EM algorithm. FlexMix provides the E-step and all data handling, while the M-step can be supplied by the user to easily define new models. Existing drivers implement mixtures of standard linear models, generalized linear models and model-based clustering.
This package provides tools to work with the Flexible Dirichlet distribution. The main features are an E-M algorithm for computing the maximum likelihood estimate of the parameter vector and a function based on conditional bootstrap to estimate its asymptotic variance-covariance matrix. It contains also functions to plot graphs, to generate random observations and to handle compositional data.
This package provides a general estimation framework for multi-state Markov processes with flexible specification of the transition intensities. The log-transition intensities can be specified through Generalised Additive Models which allow for virtually any type of covariate effect. Elementary specifications such as time-homogeneous processes and simple parametric forms are also supported. There are no limitations on the type of process one can assume, with both forward and backward transitions allowed and virtually any number of states.
Standard generalized additive models assume a response function, which induces an assumption on the shape of the distribution of the response. However, miss-specifying the response function results in biased estimates. Therefore in Spiegel et al. (2017) <doi:10.1007/s11222-017-9799-6> we propose to estimate the response function jointly with the covariate effects. This package provides the underlying functions to estimate these generalized additive models with flexible response functions. The estimation is based on an iterative algorithm. In the outer loop the response function is estimated, while in the inner loop the covariate effects are determined. For the response function a strictly monotone P-spline is used while the covariate effects are estimated based on a modified Fisher-Scoring algorithm. Overall the estimation relies on the mgcv'-package.
This package provides functions to fit regression models for bounded continuous and discrete responses. In case of bounded continuous responses (e.g., proportions and rates), available models are the flexible beta (Migliorati, S., Di Brisco, A. M., Ongaro, A. (2018) <doi:10.1214/17-BA1079>), the variance-inflated beta (Di Brisco, A. M., Migliorati, S., Ongaro, A. (2020) <doi:10.1177/1471082X18821213>), the beta (Ferrari, S.L.P., Cribari-Neto, F. (2004) <doi:10.1080/0266476042000214501>), and their augmented versions to handle the presence of zero/one values (Di Brisco, A. M., Migliorati, S. (2020) <doi:10.1002/sim.8406>) are implemented. In case of bounded discrete responses (e.g., bounded counts, such as the number of successes in n trials), available models are the flexible beta-binomial (Ascari, R., Migliorati, S. (2021) <doi:10.1002/sim.9005>), the beta-binomial, and the binomial are implemented. Inference is dealt with a Bayesian approach based on the Hamiltonian Monte Carlo (HMC) algorithm (Gelman, A., Carlin, J. B., Stern, H. S., Rubin, D. B. (2014) <doi:10.1201/b16018>). Besides, functions to compute residuals, posterior predictives, goodness of fit measures, convergence diagnostics, and graphical representations are provided.
This package provides flexible parametric models for time-to-event data, including the Royston-Parmar spline model, generalized gamma and generalized F distributions. Any user-defined parametric distribution can be fitted, given at least an R function defining the probability density or hazard. There are also tools for fitting and predicting from fully parametric multi-state models.
An easy way to conduct flexible scan. Monte-Carlo method is used to test the spatial clusters given the cases, population, and shapefile. A table with formal style and a map with clusters are included in the result report. The method can be referenced at: Toshiro Tango and Kunihiko Takahashi (2005) <doi:10.1186/1476-072X-4-11>.
This package provides tools for flexible non-linear least squares model fitting using general-purpose optimization techniques. The package supports a variety of optimization algorithms, including those provided by the optimx package, making it suitable for handling complex non-linear models. Features include parallel processing support via the future and foreach packages, comprehensive model diagnostics, and visualization capabilities. Implements methods described in Nash and Varadhan (2011, <doi:10.18637/jss.v043.i09>).
Enables the construction of flexible urban delineations that can be tailored to specific applications or research questions, see Van Migerode et al. (2024) <DOI:10.1177/23998083241262545> and Van Migerode et al. (2025) <DOI:10.5281/zenodo.15173220>. Originally developed to flexibly reconstruct the Degree of Urbanisation classification of cities, towns and rural areas developed by Dijkstra et al. (2021) <DOI:10.1016/j.jue.2020.103312>. Now it also support a broader range of delineation approaches, using multiple datasets â including population, built-up area, and night-time light grids â and different thresholding methods.
flex
can be used to validate Swagger schemata.
This package provides functions to switch the BLAS'/'LAPACK optimized backend and change the number of threads without leaving the R session, which needs to be linked against the FlexiBLAS
wrapper library <https://www.mpi-magdeburg.mpg.de/projects/flexiblas>.
This package provides tools to create pretty tables for HTML documents and other formats. Functions are provided to let users create tables, modify and format their content. It extends the officer
package and can be used within R markdown documents when rendering to HTML and to Word documents.
The main function kcca
implements a general framework for k-centroids cluster analysis supporting arbitrary distance measures and centroid computation. Further cluster methods include hard competitive learning, neural gas, and QT clustering. There are numerous visualization methods for cluster results (neighborhood graphs, convex cluster hulls, barcharts of centroids, ...), and bootstrap methods for the analysis of cluster stability.
Estimation of mixed models including a subject-specific variance which can be time and covariate dependent. In the joint model framework, the package handles left truncation and allows a flexible dependence structure between the competing events and the longitudinal marker. The estimation is performed under the frequentist framework, using the Marquardt-Levenberg algorithm. (Courcoul, Tzourio, Woodward, Barbieri, Jacqmin-Gadda (2023) <arXiv:2306.16785>
).