This package implements the Classification-based on Association Rules (CBA) algorithm for association rule classification. The package, also described in Hahsler et al. (2019) <doi:10.32614/RJ-2019-048>, contains several convenience methods that allow to automatically set CBA parameters (minimum confidence, minimum support) and it also natively handles numeric attributes by integrating a pre-discretization step. The rule generation phase is handled by the arules package. To further decrease the size of the CBA models produced by the arc package, postprocessing by the qCBA
package is suggested.
Set of functions to analyse and estimate Artificial Counterfactual models from Carvalho, Masini and Medeiros (2016) <DOI:10.2139/ssrn.2823687>.
This package is designed to streamline scATAC analyses in R.
An interface to the ArcGIS
arcpy and arcgis python API <https://pro.arcgis.com/en/pro-app/latest/arcpy/get-started/arcgis-api-for-python.htm>. Provides various tools for installing and configuring a Conda environment for accessing ArcGIS
geoprocessing functions. Helper functions for manipulating and converting ArcGIS
objects from R are also provided.
Fast processing of ArcGIS
FeatureCollection
protocol buffers in R. It is designed to work seamlessly with httr2 and integrates with sf'.
Bindings to libarchive <http://www.libarchive.org> the Multi-format archive and compression library. Offers R connections and direct extraction for many archive formats including tar', ZIP', 7-zip', RAR', CAB and compression formats including gzip', bzip2', compress', lzma and xz'.
This package provides functions to process minute level actigraphy-measured activity counts data and extract commonly used physical activity volume and fragmentation metrics.
The archdata package provides several types of data that are typically used in archaeological research. It provides all of the data sets used in "Quantitative Methods in Archaeology Using R" by David L Carlson, one of the Cambridge Manuals in Archaeology.
This package provides functions to efficiently query ArcGIS
REST APIs <https://developers.arcgis.com/rest/>. Both spatial and SQL queries can be used to retrieve data. Simple Feature (sf) objects are utilized to perform spatial queries. This package was neither produced nor is maintained by Esri.
For emulating multifidelity computer models. The major methods include univariate autoregressive cokriging and multivariate autoregressive cokriging. The autoregressive cokriging methods are implemented for both hierarchically nested design and non-nested design. For hierarchically nested design, the model parameters are estimated via standard optimization algorithms; For non-nested design, the model parameters are estimated via Monte Carlo expectation-maximization (MCEM) algorithms. In both cases, the priors are chosen such that the posterior distributions are proper. Notice that the uniform priors on range parameters in the correlation function lead to improper posteriors. This should be avoided when Bayesian analysis is adopted. The development of objective priors for autoregressive cokriging models can be found in Pulong Ma (2020) <DOI:10.1137/19M1289893>. The development of the multivariate autoregressive cokriging models with possibly non-nested design can be found in Pulong Ma, Georgios Karagiannis, Bledar A Konomi, Taylor G Asher, Gabriel R Toro, and Andrew T Cox (2019) <arXiv:1909.01836>
.
Data exploration and modelling is a process in which a lot of data artifacts are produced. Artifacts like: subsets, data aggregates, plots, statistical models, different versions of data sets and different versions of results. Archivist helps to store and manage artifacts created in R. It allows you to store selected artifacts as binary files together with their metadata and relations. Archivist allows sharing artifacts with others. It can look for already created artifacts by using its class, name, date of the creation or other properties. It also makes it easy to restore such artifacts.
An R Shiny application for visual and statistical exploration and web communication of archaeological spatial data, either remains or sites. It offers interactive 3D and 2D visualisations (cross sections and maps of remains, timeline of the work made in a site) which can be exported in SVG and HTML formats. It performs simple spatial statistics (convex hull, regression surfaces, 2D kernel density estimation) and allows exporting data to other online applications for more complex methods. archeoViz
can be used offline locally or deployed on a server, either with interactive input of data or with a static data set. Example is provided at <https://analytics.huma-num.fr/archeoviz/en>.
Analysis of complex plant root system architectures (RSA) using the output files created by Data Analysis of Root Tracings (DART), an open-access software dedicated to the study of plant root architecture and development across time series (Le Bot et al (2010) "DART: a software to analyse root system architecture and development from captured images", Plant and Soil, <DOI:10.1007/s11104-009-0005-2>), and RSA data encoded with the Root System Markup Language (RSML) (Lobet et al (2015) "Root System Markup Language: toward a unified root architecture description language", Plant Physiology, <DOI:10.1104/pp.114.253625>). More information can be found in Delory et al (2016) "archiDART
: an R package for the automated computation of plant root architectural traits", Plant and Soil, <DOI:10.1007/s11104-015-2673-4>.
It fits a univariate left, right, or interval censored linear regression model with autoregressive errors, considering the normal or the Student-t distribution for the innovations. It provides estimates and standard errors of the parameters, predicts future observations, and supports missing values on the dependent variable. References used for this package: Schumacher, F. L., Lachos, V. H., & Dey, D. K. (2017). Censored regression models with autoregressive errors: A likelihood-based perspective. Canadian Journal of Statistics, 45(4), 375-392 <doi:10.1002/cjs.11338>. Schumacher, F. L., Lachos, V. H., Vilca-Labra, F. E., & Castro, L. M. (2018). Influence diagnostics for censored regression models with autoregressive errors. Australian & New Zealand Journal of Statistics, 60(2), 209-229 <doi:10.1111/anzs.12229>. Valeriano, K. A., Schumacher, F. L., Galarza, C. E., & Matos, L. A. (2021). Censored autoregressive regression models with Student-t innovations. arXiv
preprint <arXiv:2110.00224>
.
This package provides a project template to support the data science workflow.
The main function archetypes
implements a framework for archetypal analysis supporting arbitrary problem solving mechanisms for the different conceptual parts of the algorithm.
This package provides methods to analyse spatial units in archaeology from the relationships between refitting fragmented objects scattered in these units (e.g. stratigraphic layers). Graphs are used to model archaeological observations. The package is mainly based on the igraph package for graph analysis. Functions can: 1) create, manipulate, and simulate fragmentation graphs, 2) measure the cohesion and admixture of archaeological spatial units, and 3) characterise the topology of a specific set of refitting relationships. Empirical datasets are provided as examples. Documentation about archeofrag is provided by the vignette included in this package, by the accompanying scientific papers: Plutniak (2021, Journal of Archaeological Science, <doi:10.1016/j.jas.2021.105501>) and Plutniak (2022, Journal of Open Source Software, <doi:10.21105/joss.04335>). This package is complemented by a companion GUI application available at <https://analytics.huma-num.fr/Sebastien.Plutniak/archeofrag/>.
This package performs archetypal analysis by using Principal Convex Hull Analysis under a full control of all algorithmic parameters. It contains a set of functions for determining the initial solution, the optimal algorithmic parameters and the optimal number of archetypes. Post run tools are also available for the assessment of the derived solution. Morup, M., Hansen, LK (2012) <doi:10.1016/j.neucom.2011.06.033>. Hochbaum, DS, Shmoys, DB (1985) <doi:10.1287/moor.10.2.180>. Eddy, WF (1977) <doi:10.1145/355759.355768>. Barber, CB, Dobkin, DP, Huhdanpaa, HT (1996) <doi:10.1145/235815.235821>. Christopoulos, DT (2016) <doi:10.2139/ssrn.3043076>. Falk, A., Becker, A., Dohmen, T., Enke, B., Huffman, D., Sunde, U. (2018), <doi:10.1093/qje/qjy013>. Christopoulos, DT (2015) <doi:10.1016/j.jastp.2015.03.009> . Murari, A., Peluso, E., Cianfrani, Gaudio, F., Lungaroni, M., (2019), <doi:10.3390/e21040394>.
Lite interface for finding locations of addresses or businesses around the world using the ArcGIS
REST API service <https://developers.arcgis.com/rest/geocode/api-reference/overview-world-geocoding-service.htm>. Address text can be converted to location candidates and a location can be converted into an address. No API key required.
Developer oriented utility functions designed to be used as the building blocks of R packages that work with ArcGIS
Location Services. It provides functionality for authorization, Esri JSON construction and parsing, as well as other utilities pertaining to geometry and Esri type conversions. To support ArcGIS
Pro users, authorization can be done via arcgisbinding'. Installation instructions for arcgisbinding can be found at <https://developers.arcgis.com/r-bridge/installation/>.
Enables users of ArcGIS
Enterprise', ArcGIS
Online', or ArcGIS
Platform to read, write, publish, or manage vector and raster data via ArcGIS
location services REST API endpoints <https://developers.arcgis.com/rest/>.
The ArcGIS
Places service is a ready-to-use location service that can search for businesses and geographic locations around the world. It allows you to find, locate, and discover detailed information about each place. Query for places near a point, within a bounding box, filter based on categories, or provide search text. arcgisplaces integrates with sf for out of the box compatibility with other spatial libraries. Learn more in the Places service API reference <https://developers.arcgis.com/rest/places/>.
This package provides a very fast and robust interface to ArcGIS
Geocoding Services'. Provides capabilities for reverse geocoding, finding address candidates, character-by-character search autosuggestion, and batch geocoding. The public ArcGIS
World Geocoder is accessible for free use via arcgisgeocode for all services except batch geocoding. arcgisgeocode also integrates with arcgisutils to provide access to custom locators or private ArcGIS
World Geocoder hosted on ArcGIS
Enterprise'. Learn more in the Geocode service API reference <https://developers.arcgis.com/rest/geocode/api-reference/overview-world-geocoding-service.htm>.
Statistical analysis of archaeological dates and groups of dates. This package allows to post-process Markov Chain Monte Carlo (MCMC) simulations from ChronoModel
<https://chronomodel.com/>, Oxcal <https://c14.arch.ox.ac.uk/oxcal.html> or BCal <https://bcal.shef.ac.uk/>. It provides functions for the study of rhythms of the long term from the posterior distribution of a series of dates (tempo and activity plot). It also allows the estimation and visualization of time ranges from the posterior distribution of groups of dates (e.g. duration, transition and hiatus between successive phases) as described in Philippe and Vibet (2020) <doi:10.18637/jss.v093.c01>.