This package provides functions and datasets from book Companion to Applied regression, Second Edition, Sage, 2011.
This package provides a collection of cardiovascular research datasets and analytical tools, including methods for cardiovascular procedural data, such as electrocardiography, echocardiography, and catheterization data. Additional methods exist for analysis of procedural billing codes.
This package implements the regression approach of Zuber and Strimmer (2011) "High-dimensional regression and variable selection using CAR scores" SAGMB 10: 34, <DOI:10.2202/1544-6115.1730>. CAR scores measure the correlation between the response and the Mahalanobis-decorrelated predictors. The squared CAR score is a natural measure of variable importance and provides a canonical ordering of variables. This package provides functions for estimating CAR scores, for variable selection using CAR scores, and for estimating corresponding regression coefficients. Both shrinkage as well as empirical estimators are available.
In randomized controlled trial (RCT), balancing covariate is often one of the most important concern. CARM package provides functions to balance the covariates and generate allocation sequence by covariate-adjusted Adaptive Randomization via Mahalanobis-distance (ARM) for RCT. About what ARM is and how it works please see Y. Qin, Y. Li, W. Ma, H. Yang, and F. Hu (2022). "Adaptive randomization via Mahalanobis distance" Statistica Sinica. <doi:10.5705/ss.202020.0440>. In addition, the package is also suitable for the randomization process of multi-arm trials. For details, please see Yang H, Qin Y, Wang F, et al. (2023). "Balancing covariates in multi-arm trials via adaptive randomization" Computational Statistics & Data Analysis.<doi:10.1016/j.csda.2022.107642>.
This package provides miscellaneous functions for training and plotting classification and regression models.
Emulation of an application originally created by Paul Pukite. Computer Aided Rate Modeling and Simulation. Jan Pukite and Paul Pukite, (1998, ISBN 978-0-7803-3482), William J. Stewart, (1994, ISBN: 0-691-03699-3).
Create extra Analysis Results Data (ARD) summary objects. The package supplements the simple ARD functions from the cards package, exporting functions to put statistical results in the ARD format. These objects are used and re-used to construct summary tables, visualizations, and written reports.
This package lets you construct Clinical Data Interchange Standards Consortium (CDISC) compliant Analysis Results Data objects. These objects are used and re-used to construct summary tables, visualizations, and written reports. The package also exports utilities for working with these objects and creating new Analysis Results Data objects.
Compute covariate-adjusted specificity at controlled sensitivity level, or covariate-adjusted sensitivity at controlled specificity level, or covariate-adjust receiver operating characteristic curve, or covariate-adjusted thresholds at controlled sensitivity/specificity level. All statistics could also be computed for specific sub-populations given their covariate values. Methods are described in Ziyi Li, Yijian Huang, Datta Patil, Martin G. Sanda (2021+) "Covariate adjustment in continuous biomarker assessment".
This package provides a framework is provided to develop R packages using Rust <https://www.rust-lang.org/> with minimal overhead, and more wrappers are easily added. Help is provided to use Cargo <https://doc.rust-lang.org/cargo/> in a manner consistent with CRAN policies. Rust code can also be embedded directly in an R script. The package is not official, affiliated with, nor endorsed by the Rust project.
Stan based functions to estimate CAR-MM models. These models allow to estimate Generalised Linear Models with CAR (conditional autoregressive) spatial random effects for spatially and temporally misaligned data, provided a suitable Multiple Membership matrix. The main references are Gramatica, Liverani and Congdon (2023) <doi:10.1214/23-BA1370>, Petrof, Neyens, Nuyts, Nackaerts, Nemery and Faes (2020) <doi:10.1002/sim.8697> and Gramatica, Congdon and Liverani <doi:10.1111/rssc.12480>.
This package provides functions and command-line user interface to generate allocation sequence by covariate-adaptive randomization for clinical trials. The package currently supports six covariate-adaptive randomization procedures. Three hypothesis testing methods that are valid and robust under covariate-adaptive randomization are also available in the package to facilitate the inference for treatment effect under the included randomization procedures. Additionally, the package provides comprehensive and efficient tools to allow one to evaluate and compare the performance of randomization procedures and tests based on various criteria. See Ma W, Ye X, Tu F, and Hu F (2023) <doi: 10.18637/jss.v107.i02> for details.
Predicts categorical or continuous outcomes while concentrating on a number of key points. These are Cross-validation, Accuracy, Regression and Rule of Ten or "one in ten rule" (CARRoT
), and, in addition to it R-squared statistics, prior knowledge on the dataset etc. It performs the cross-validation specified number of times by partitioning the input into training and test set and fitting linear/multinomial/binary regression models to the training set. All regression models satisfying chosen constraints are fitted and the ones with the best predictive power are given as an output. Best predictive power is understood as highest accuracy in case of binary/multinomial outcomes, smallest absolute and relative errors in case of continuous outcomes. For binary case there is also an option of finding a regression model which gives the highest AUROC (Area Under Receiver Operating Curve) value. The option of parallel toolbox is also available. Methods are described in Peduzzi et al. (1996) <doi:10.1016/S0895-4356(96)00236-3> , Rhemtulla et al. (2012) <doi:10.1037/a0029315>, Riley et al. (2018) <doi:10.1002/sim.7993>, Riley et al. (2019) <doi:10.1002/sim.7992>.
This package provides datasets to accompany J. Fox and S. Weisberg, An R Companion to Applied Regression, Third Edition, Sage.
Computer algebra via the SymPy
library (<https://www.sympy.org/>). This makes it possible to solve equations symbolically, find symbolic integrals, symbolic sums and other important quantities.
This package contains functions to estimate the Correlation-Adjusted Regression Survival (CARS) Scores. The method is described in Welchowski, T. and Zuber, V. and Schmid, M., (2018), Correlation-Adjusted Regression Survival Scores for High-Dimensional Variable Selection, <arXiv:1802.08178>
.
The caRamel
optimizer has been developed to meet the requirement for an automatic calibration procedure that delivers a family of parameter sets that are optimal with regard to a multi-objective target (Monteil et al. <doi:10.5194/hess-24-3189-2020>).
Evaluation of the Carlson elliptic integrals and the incomplete elliptic integrals with complex arguments. The implementations use Carlson's algorithms <doi:10.1007/BF02198293>. Applications of elliptic integrals include probability distributions, geometry, physics, mechanics, electrodynamics, statistical mechanics, astronomy, geodesy, geodesics on conics, and magnetic field calculations.
This package performs a Correspondence Analysis (CA) on a contingency table and creates a scatterplot of the row and column points on the selected dimensions. Optionally, the function can add segments to the plot to visualize significant associations between row and column categories on the basis of positive (unadjusted) standardized residuals larger than a given threshold.
Estimation of population size of migratory caribou herds based on large scale aggregations monitored by radio telemetry. It implements the methodology found in the article by Rivest et al. (1998) about caribou abundance estimation. It also includes a function based on the Lincoln-Petersen Index as applied to radio telemetry data by White and Garrott (1990).
Sending functions to remote processes can be wasteful of resources because they carry their environments with them. With this package, it is easy to create functions that are isolated from their environment. These isolated functions, also called crates, print to the console with their total size and can be easily tested locally before being sent to a remote.
This package provides a flexible tool for calculating carbon-equivalent emissions. Mostly using data from the UK Government's Greenhouse Gas Conversion Factors report <https://www.gov.uk/government/publications/greenhouse-gas-reporting-conversion-factors-2023>, it facilitates transparent emissions calculations for various sectors, including travel, accommodation, and clinical activities. The package is designed for easy integration into R workflows, with additional support for shiny applications and community-driven extensions.
The number of bird or bat fatalities from collisions with buildings, towers or wind energy turbines can be estimated based on carcass searches and experimentally assessed carcass persistence times and searcher efficiency. Functions for estimating the probability that a bird or bat that died is found by a searcher are provided. Further functions calculate the posterior distribution of the number of fatalities based on the number of carcasses found and the estimated detection probability.
We provide a toolbox to fit a continuous-time fractionally integrated ARMA process (CARFIMA) on univariate and irregularly spaced time series data via both frequentist and Bayesian machinery. A general-order CARFIMA(p, H, q) model for p>q is specified in Tsai and Chan (2005) <doi:10.1111/j.1467-9868.2005.00522.x> and it involves p+q+2 unknown model parameters, i.e., p AR parameters, q MA parameters, Hurst parameter H, and process uncertainty (standard deviation) sigma. Also, the model can account for heteroscedastic measurement errors, if the information about measurement error standard deviations is known. The package produces their maximum likelihood estimates and asymptotic uncertainties using a global optimizer called the differential evolution algorithm. It also produces posterior samples of the model parameters via Metropolis-Hastings within a Gibbs sampler equipped with adaptive Markov chain Monte Carlo. These fitting procedures, however, may produce numerical errors if p>2. The toolbox also contains a function to simulate discrete time series data from CARFIMA(p, H, q) process given the model parameters and observation times.