Functions, methods, and datasets for fitting dimension reduction regression, using slicing (methods SAVE and SIR), Principal Hessian Directions (phd, using residuals and the response), and an iterative IRE. Partial methods, that condition on categorical predictors are also available. A variety of tests, and stepwise deletion of predictors, is also included. Also included is code for computing permutation tests of dimension. Adding additional methods of estimating dimension is straightforward. For documentation, see the vignette in the package. With version 3.0.4, the arguments for dr.step have been modified.
This package provides an implementation of dimensionality reduction via regression using Kernel Ridge Regression.
An implementation of distributional random forests as introduced in Cevid & Michel & Meinshausen & Buhlmann (2020) <arXiv:2005.14458>
.
This package provides a suite of flexible and versatile model fitting and after-fitting functions for the analysis of dose-response data.
Fit logistic functions to observed dose-response continuous data and evaluate goodness-of-fit measures. See Malyutina A., Tang J., and Pessia A. (2023) <doi:10.18637/jss.v106.i04>.
This package provides a set of user-friendly wrapper functions for creating consistent graphics and diagrams with lines, common shapes, text, and page settings. Compatible with and based on the R grid package.
This package helps you with creation and use of R repositories via helper functions to insert packages into a repository, and to add repository information to the current R session. Two primary types of repositories are supported: gh-pages at GitHub, as well as local repositories on either the same machine or a local network. Drat is a recursive acronym: Drat R Archive Template.
This package provides a collection of functions that perform jump regression and image analysis such as denoising, deblurring and jump detection. The implemented methods are based on the following research: Qiu, P. (1998) <doi:10.1214/aos/1024691468>, Qiu, P. and Yandell, B. (1997) <doi: 10.1080/10618600.1997.10474746>, Qiu, P. (2009) <doi: 10.1007/s10463-007-0166-9>, Kang, Y. and Qiu, P. (2014) <doi: 10.1080/00401706.2013.844732>, Qiu, P. and Kang, Y. (2015) <doi: 10.5705/ss.2014.054>, Kang, Y., Mukherjee, P.S. and Qiu, P. (2018) <doi: 10.1080/00401706.2017.1415975>, Kang, Y. (2020) <doi: 10.1080/10618600.2019.1665536>.
Tutarials of R learning easily and happily.
This package provides a toolkit for parsing dice notation, analyzing rolls, calculating success probabilities, and plotting outcome distributions.
This is the companion package to the Data Visualization Geometries Encyclopedia, providing seamless access to the associated data.
Efficient covariate-adjusted estimators of quantities that are useful for establishing the effects of treatments on ordinal outcomes.
Includes various functions for playing drum sounds. beat()
plays a drum sound from one of the six included drum kits. tempo()
sets spacing between calls to beat()
in bpm. Together the two functions can be used to create many different drum patterns.
Doubly robust average partial effect estimation. This implementation contains methods for adding additional smoothness to plug-in regression procedures and for estimating score functions using smoothing splines. Details of the method can be found in Harvey Klyne and Rajen D. Shah (2023) <doi:10.48550/arXiv.2308.09207>
.
Estimation of the total population size from capture-recapture data efficiently and with low bias implementing the methods from Das M, Kennedy EH, and Jewell NP (2021) <arXiv:2104.14091>
. The estimator is doubly robust against errors in the estimation of the intermediate nuisance parameters. Users can choose from the flexible estimation models provided in the package, or use any other preferred model.
This package implements the locally efficient doubly robust difference-in-differences (DiD
) estimators for the average treatment effect proposed by Sant'Anna and Zhao (2020) <doi:10.1016/j.jeconom.2020.06.003>. The estimator combines inverse probability weighting and outcome regression estimators (also implemented in the package) to form estimators with more attractive statistical properties. Two different estimation methods can be used to estimate the nuisance functions.
We offer an implementation of the series representation put forth in "A series representation for multidimensional Rayleigh distributions" by Wiegand and Nadarajah <DOI: 10.1002/dac.3510>. Furthermore we have implemented an integration approach proposed by Beaulieu et al. for 3 and 4-dimensional Rayleigh densities (Beaulieu, Zhang, "New simplest exact forms for the 3D and 4D multivariate Rayleigh PDFs with applications to antenna array geometrics", <DOI: 10.1109/TCOMM.2017.2709307>).
Joint dimension reduction and spatial clustering is conducted for Single-cell RNA sequencing and spatial transcriptomics data, and more details can be referred to Wei Liu, Xu Liao, Yi Yang, Huazhen Lin, Joe Yeong, Xiang Zhou, Xingjie Shi and Jin Liu. (2022) <doi:10.1093/nar/gkac219>. It is not only computationally efficient and scalable to the sample size increment, but also is capable of choosing the smoothness parameter and the number of clusters as well.
This package provides a general-purpose computational engine for data analysis, drake rebuilds intermediate data objects when their dependencies change, and it skips work when the results are already up to date. Not every execution starts from scratch, there is native support for parallel and distributed computing, and completed projects have tangible evidence that they are reproducible. Extensive documentation, from beginner-friendly tutorials to practical examples and more, is available at the reference website <https://docs.ropensci.org/drake/> and the online manual <https://books.ropensci.org/drake/>.
This package provides a specific and comprehensive framework for the analyses of time-to-event data in agriculture. Fit non-parametric and parametric time-to-event models. Compare time-to-event curves for different experimental groups. Plots and other displays. It is particularly tailored to the analyses of data from germination and emergence assays. The methods are described in Onofri et al. (2020) "A unified framework for the analysis of germination, emergence, and other time-to-event data in weed science"", Weed Science, 70, 259-271 <doi:10.1017/wsc.2022.8>.
Analysis and visualization of dropout between conditions in surveys and (online) experiments. Features include computation of dropout statistics, comparing dropout between conditions (e.g. Chi square), analyzing survival (e.g. Kaplan-Meier estimation), comparing conditions with the most different rates of dropout (Kolmogorov-Smirnov) and visualizing the result of each in designated plotting functions. Sources: Andrea Frick, Marie-Terese Baechtiger & Ulf-Dietrich Reips (2001) <https://www.researchgate.net/publication/223956222_Financial_incentives_personal_information_and_drop-out_in_online_studies>; Ulf-Dietrich Reips (2002) "Standards for Internet-Based Experimenting" <doi:10.1027//1618-3169.49.4.243>.
Fit restricted mean models for the conditional association between an exposure and an outcome, given covariates. Three methods are implemented: O-estimation, where a nuisance model for the association between the covariates and the outcome is used; E-estimation where a nuisance model for the association between the covariates and the exposure is used, and doubly robust (DR) estimation where both nuisance models are used. In DR-estimation, the estimates will be consistent when at least one of the nuisance models is correctly specified, not necessarily both. For more information, see Zetterqvist and Sjölander (2015) <doi:10.1515/em-2014-0021>.
We present DRaWR
, a network-based method for ranking genes or properties related to a given gene set. Such related genes or properties are identified from among the nodes of a large, heterogeneous network of biological information. Our method involves a random walk with restarts, performed on an initial network with multiple node and edge types, preserving more of the original, specific property information than current methods that operate on homogeneous networks. In this first stage of our algorithm, we find the properties that are the most relevant to the given gene set and extract a subnetwork of the original network, comprising only the relevant properties. We then rerank genes by their similarity to the given gene set, based on a second random walk with restarts, performed on the above subnetwork.
Models the relationship between dose levels and responses in a pharmacological experiment using the 4 Parameter Logistic model. Traditional packages on dose-response modelling such as drc and nplr often draw errors due to convergence failure especially when data have outliers or non-logistic shapes. This package provides robust estimation methods that are less affected by outliers and other initialization methods that work well for data lacking logistic shapes. We provide the bounds on the parameters of the 4PL model that prevent parameter estimates from diverging or converging to zero and base their justification in a statistical principle. These methods are used as remedies to convergence failure problems. Gadagkar, S. R. and Call, G. B. (2015) <doi:10.1016/j.vascn.2014.08.006> Ritz, C. and Baty, F. and Streibig, J. C. and Gerhard, D. (2015) <doi:10.1371/journal.pone.0146021>.